
 
Real-Time Area Lighting:

a Journey from Research to Production
Stephen Hill & Eric Heitz

In this talk, I’m going to cover joint work with Eric Heitz on streamlining the implementation…

 
Real-Time Polygonal-Light Shading
with Linearly Transformed Cosines

Eric Heitz & Jonathan Dupuy (Unity Technologies),
Stephen Hill (Ubisoft), David Neubelt (Ready At Dawn Studios)

…of this paper, which is about cracking the problem of doing area lighting in real time with a wide range of materials (not just diffuse).

As an aside, this paper was the result of a thoroughly enjoyable collaboration between Eric and Jonathan at Unity, Dave at Ready At Dawn, and myself at Ubisoft.

R & D

You could call it a real R&D effort…

Researchers
&

Developers

…researchers & developers! :)

Theory
&

Implementation

And this also reflects the content of this talk: a little bit of theory from the paper, plus some implementation issues to look out for.

Theory
&

Implementation

I’ll start, naturally, with the theory…

 
Real-Time Polygonal-Light Shading
with Linearly Transformed Cosines

Eric Heitz & Jonathan Dupuy (Unity Technologies),
Stephen Hill (Ubisoft), David Neubelt (Ready At Dawn Studios)

…but for a complete treatment, be sure to check out Eric’s presentation of the paper:

https://eheitzresearch.wordpress.com/415-2/

teaser video

Before I get into it, here’s a video of some results…

This is an early prototype that was together by Unity’s talented demo team. They picked up the technique and just ran with it, as you can see in the beautiful Adam demo:

https://www.youtube.com/watch?v=GXI0l3yqBrA

polygonal-light shading

Okay, now down to the problem at hand: lighting with polygon sources.

the problem

What are we really trying to solve here?

the problem

BRDF

Firstly, we have the BRDF: a spherical function that describes how the material scatters light at a particular shading point.

the problem

BRDF

This plot is for a given view direction…

(or, reciprocally, a given light direction)

the problem

BRDF

…and represents the directions from which light will scatter back to the eye.

the problem

BRDF

Note: while I’ll be talking about BRDFs throughout the talk, this really could be any spherical function (the maths stays the same).

the problem

BRDF spherical polygon

Secondly, we have lighting (incoming radiance) from a polygon that’s arriving at the shading point.

the problem

integrationBRDF spherical polygon

The shading result (outgoing radiance) is the integral of the BRDF over this spherical polygon.

this is tricky ☹
integrationBRDF spherical polygon

This is much harder than point lighting, where we only need to evaluate the BRDF for a single light direction. We now need to consider many directions.

In offline rendering, we might solve this with Monte Carlo sampling, but for real-time this isn’t a viable option – it would either be too slow or too noisy.

We’d like to find a closed-form solution instead, i.e. an equation we can simply evaluate that will give us the right answer immediately without needing to sample.

simple cases exist

sphere

Simple distributions can be integrated over polygons in closed form. One example is the uniform spherical distribution.

simple cases exist

→ solid angle

Its integral over a spherical polygon is equivalent to computing the solid angle of the polygon.

There is a closed-form expression for this: Girard’s theorem.

simple cases exist

→ solid angle hemisphere

Another simple example is the uniform hemispherical distribution.

simple cases exist

→ solid angle → clipped solid angle

This is simply the solid angle of the polygon clipped to the hemisphere.

simple cases exist

clamped cosine→ solid angle → clipped solid angle

A more interesting example is the cosine distribution.

You can also call it diffuse or Lambertian.

simple cases exist

→ irradiance→ solid angle → clipped solid angle

Computing its integral over the polygon gives the irradiance (or form factor).

Again, there is a closed-form expression for it, derived by Lambert in the 18th century! More on this later.

too limiting ☹
→ irradiance→ solid angle → clipped solid angle

And that’s about it! Unfortunately these solutions are too limiting for what we need.

we want all frequencies

varying roughness

We’d really like to be able to represent a wider range of materials, from mirror-like, to semi-glossy, to rough.

This is a bare minimum of what we’d expect from a real-time shading model in terms of expressiveness. Giving this up in order to accommodate area lights doesn’t make
sense.

we want all frequencies

varying roughness

we want all frequencies

varying roughness

we want all frequencies

varying roughness

we want anisotropy

Real-world materials also exhibit strong anisotropy (or ‘stretched highlights’) at grazing angles.

Industry-standard microfacet models are able to reproduce this convincingly. It’s an effect that we’re used to seeing from real-time implementations with punctual light
sources, so we’d love to be able to achieve the same behaviour with polygonal area lights.

Image credit: Grand Rapids Press.

we want anisotropy

we want anisotropy

we want anisotropy

Enter: Linearly Transformed Cosines

So to recap, we’d like to evaluate the product of a general BRDF and a polygonal light source in a fast and noise free way, but there’s currently no way to do this.

That’s been a longstanding roadblock and it would be disappointing if we had to stop the presentation here. :)

Fortunately, we managed to find a solution to this problem: Linearly Transformed Cosines (LTCs).

This is the core contribution of our paper.

I’ll now give you a high-level overview of LTCs, but (again) please refer to Eric’s slides for more details.

Essentially, the main idea is to take a simple distribution and apply a linear transform to it. In doing so, we can create a wide range of more sophisticated
‘shapes’ (spherical functions).

cosine

Let’s start with the clamped cosine distribution mentioned earlier…

cosine roughness

λ 0 0
0 λ 0
0 0 1[]

If we apply a uniform scale to x and y, we can vary the roughness of the distribution.

cosine roughness anisotropy

λ 0 0
0 λ 0
0 0 1[] λx 0 0

0 λy 0
0 0 1[]

With a different factor for x and y we can create anisotropy.

cosine roughness anisotropy skewness

λ 0 0
0 λ 0
0 0 1[] λx 0 0

0 λy 0
0 0 1[] 1 0 0

0 1 0
λ 0 1[]

and through the bottom-left element of the transform we can introduce ‘skewness’.

cosine roughness anisotropy skewness random

λ 0 0
0 λ 0
0 0 1[] λx 0 0

0 λy 0
0 0 1[] 1 0 0

0 1 0
λ 0 1[]

We can even create all sorts of wacky behaviour with random transforms, some of which even lead to bimodal distributions.

So, as you can see, this approach is very expressive.

linear transform

cosine M→

In general we can take a cosine distribution and apply an arbitrary 3x3 matrix, M, producing a new distribution.

In the paper we refer to the family of distributions generated in this way as Linearly Transformed Cosines.

linear transform

cosine M→

linear transform

cosine M→

linear transform

LTCcosine M→ →

tabulated

roughness

view angle

linear transformation
M

~80KB precomputed data ✔

So how to we use this in practice?

Well let’s say that we want to compute the integral of a GGX-based BRDF with a polygonal light source. First we find a linear transform M that best approximates this
BRDF with an LTC, for a given roughness and view angle. We do this ahead of time for all roughnesses and view angles, and store the resulting matrices in a table (=
texture).

In practice we don’t need that much data (see paper for details).

Now for the ‘magic trick’. At runtime we take our BRDF-polygon configuration…

inverse transform

LTCM-1 ←

and apply the inverse transform to the vertices of the polygon, based on our LTC fitting of that BRDF (for the view angle and roughness at the current shading point).

inverse transform

LTC←M-1

and apply the inverse transform to the vertices of the polygon, based on our LTC fitting of that BRDF (for the view angle and roughness at the current shading point).

inverse transform

LTC←M-1

and apply the inverse transform to the vertices of the polygon, based on our LTC fitting of that BRDF (for the view angle and roughness at the current shading point).

cosine integration

LTCcosine ← ←

we know how to solve this ✔

M-1

This turns the configuration into an equivalent but simpler integration problem.

You can think of this as transforming back to ‘cosine space’.

Lambert, 1760!

And we know how to solve this thanks to the work of Johann Heinrich Lambert (AKA ‘Mr NdotL’), from all the way back in the 18th century.

Image credit: Photometria, Lambert.

area integral → edge integrals

In practice we don’t calculate the area integral directly but instead evaluate a series of line/edge integrals over the boundary of the spherical polygon (one for each edge).

area integral → edge integrals

V2
V1

For a given edge, from two vertices v1 and v2…

V2
V1

…we’re computing a 1D spherical line integral (green).

V2
V1 θ

It involves the arc length in radians…

V2
V1 θ

U

There’s also a perpendicular vector u (purple)…

V2
V1

U

n

…and this is ‘dotted’ with the local surface normal n.

And we simply repeat this process over all edges, summing the results up.

This gives the same result as the area integral.

I don’t have the time in this presentation to explain why this works. One way to think about it is as an application of Stokes’ theorem, which you might have encountered
in other areas, such as fluid simulation. But this is a little bit abstract, so for a more intuitive treatment of this particular case, see Eric’s writeup here:

https://hal.archives-ouvertes.fr/hal-01458129

Anyway, this results in a really compact and elegant implementation, as you can see here.

It couldn’t be simpler, right?

peace out?

So is our job done? Of course not…

Image credit: White House Correspondent’s Dinner, C-Span.

research mountain

No, far from it. To use an analogy:

we may have descended research mountain…

Image credit: Lord of the Rings, New Line Cinema.

Dark Tower of implementation

…but we still need to scale the ‘dark tower’ of implementation.

Theory
&

Implementation

So, now for a few implementation tips and tricks.

There’s a lot more that we’ve gone through than I’ll cover here. We’ll be providing more detailed notes at a later date.

1. Lookup M-1, based on roughness & v. angle

2. Transform polygon by M-1

3. Clip polygon to upper hemisphere

4. Compute edge integrals

Elaborating a little, here are the basic steps (ignoring textures for now).

1. Lookup M-1, based on roughness & v. angle

2. Transform polygon by M-1

3. Clip polygon to upper hemisphere

4. Compute edge integrals

Going a little out of order, let’s look at those edge integrals first.

What could possible go wrong?

looks okay?

Everything looks okay here, right?

bright: major artefacts

Unfortunately, if you crank up the light intensity, problems start to appear.

bright: major artefacts

Here’s the code again.

It’s mysterious. Shouldn’t this just work?

better, but…

I’m ashamed to say that we worked around the problem by using a mathematically equivalent form that proved to be more numerically stable.

This partially fixed the problem and looked fine in demos, but surely there’s more going on here.

acos: a four letter word!

The culprit is acos!

acos: evil lurks within!

As most of you probably know, this is not an intrinsic.

acos: evil lurks within!

Here’s the standard implementation. I’ve seen equivalent code with HLSL, CUDA, OpenGL and on consoles. There’s a sqrt(1 - x) which provides the basic shape,
plus a cubic polynomial.

While this is accurate for most applications, it turns out that the edge integrals require a lot of precision. With the standard acos there can be ringing artefacts in some
cases (high-intensity lighting and smooth receiver).

(See Handbook of Mathematical Functions, Abramowitz and Stegun.)

0.2 0.4 0.6 0.8 1.0
cos(theta)

1.1

1.2

1.3

1.4

1.5

1.6

theta

sin (theta)

Long story short, after a bunch of trial and error, the solution became clear:

find a fit for theta over sin(theta).

(This fit is computed offline, using a fully accurate CPU implementation of acos in the target function.)

0.2 0.4 0.6 0.8 1.0
cos(theta)

1.1

1.2

1.3

1.4

1.5

1.6

theta

sin (theta)

rational fit

In order to obtain enough accuracy, this required a cubic rational fit.

This is not really much more expensive: we now have an additional division from the rational, but we’ve saved a sin() call.

Note: we only need to fit 0 to pi/2 as the remaining angular range can be calculated from this.

rational fit 0.2 0.4 0.6 0.8 1.0
cos(theta)

0.99996

0.99998

1.00000

1.00002

1.00004

relative error

old

new

By doing this compound fit, the relative error* is much lower.

old: using the standard shading language implementation of acos to calculate theta

new: our fit of theta/sin(theta).

(* This isn’t really the relative error, but the ratio of each approximation to the original function, which makes under- and over-shoot clear.)

rational fit
acos: evil lurks within!

So, returning to our issue…

all better!
rational fit

Here’s the result, which looks a lot better.

bonus: cheaper diffuse

As a bonus, we can use a cheaper version for diffuse, since it doesn’t need as much accuracy.

In this case we can get away with a quadratic, thereby saving some MADs and a division.

1. Lookup M-1, based on roughness & v. angle

2. Transform polygon by M-1

3. Clip polygon to upper hemisphere

4. Compute edge integrals

Right, now to the next gotcha.

looks okay?

Again, everything looks fine.

blobby mess

But at higher intensity the highlight shape isn’t correct.

I don’t have a video here, but when changing the view angle there’s some noticeable banding and interpolation issues, especially at grazing angles.

m00 0 m02
0 m11 0
m20 0 m22

a 0 b
0 c 0
d 0 1

normalise matrix: 4 terms!

This actually came down to a trick we did, where we divided all of the components of each matrix by the bottom-right value, so it would always be 1 and therefore
wouldn’t need to be stored. We did this to be able to fit the matrices into a four component texture. However, we still needed a fifth component for the magnitude of the
BRDF, so a second texture fetch in the shader was unavoidable.

In the end, it was a bit of a false economy and by doing this division we introduced significant side effect…

…which is that some of the matrix components ended up varying more wildly over the (roughness, view-angle) domain, so they don’t interpolate well.

If we don’t do this rescaling, the original five components vary a lot more smoothly and have a lower dynamic range. (We might even be able to get away with < 16bits
per component, though we haven’t tried this yet.)

blobby mess

Here’s the result we had before, with the matrix rescaling…

stable, correct shape

…and here’s after, without.

This is a good reminder that it’s helpful to visualise your data in different ways. While we had been carefully comparing the fitted LTC distributions versus the original
BRDF during development, we didn’t take a close look at the tabulated values until later.

bonus: cheaper lookup

At the time, we used another workaround to reduce the artefacts: we parameterised the lookup tables by theta rather than cos(theta). Now, with the correct fix, we
no longer need to do this, which means we can avoid the expense of acos.

1. Lookup M-1, based on roughness & v. angle

2. Transform polygon by M-1

3. Clip polygon to upper hemisphere

4. Compute edge integrals

Okay, on to the third issue: clipping.

Something I’d glossed over up until now is that in order to get the correct result (form factor) of the polygon, we need to clip the polygon to the upper hemisphere.

Polygon clipping isn’t fun…

We tried various flavours of this:

* ‘On the fly’ clipping during the edge integration

* Morgan McGuire’s quad clipping: https://casual-effects.com/research/McGuire2011Clipping/index.html. This minimises the number of branches, but involves quite a lot

of data shuffling

* A big switch / if-else based on which points are above or below the horizon

The last one turned out to be the fastest (albeit close Morgan’s) on PS4, but all of them generated a large number of instructions or branches.

branch hell

On top of that, the clipping process results in a variable number of edges: 3 to 5. So, yet more branches!

While there are probably some gains to be had by carefully examining and tuning the generated assembly for game consoles, it would be nice to avoid this complexity
entirely.

V2
V1

U

n

Let’s return to our edge integral.

V2
V1

U

n

If we don’t project onto the plane (dot with the normal), we end up with a vector form.

vector form factor

F

You can think of this as a vector form factor, or vector irradiance. Let’s call this vector F.

length(F) = form factor in direction of F

F

This has a very nice property: the length (norm) of F is the form factor of the polygon in the direction of F.

We can use this to approximate the form factor of the polygon as if it had been clipped to the horizon.

polygon → proxy sphere

n

F

Instead of a polygon, we can use a sphere that has the same form factor.

Note: we’d like to thank Brian Karis for the inspiration for this approach. (In fact, he’d actually done this already and kindly shared his final approximation during a general
email exchange on area lighting, but it wasn’t clear at the time that it was based on the same idea. Essentially we re-derived it.)

angular extent = asin(sqrt(length(F)))

n

F

We can compute the angular extent of the sphere from F…

(This comes from the fact that a sphere’s form factor is sin(angular_extent)
2
.)

elevation angle = dot(n, normalize(F))

n

F

as well as its direction (or elevation angle).

sphere with horizon clipping [Snyder96]

Why is this helpful? Well, there are a couple of (equivalent) analytical solutions for horizon-clipped sphere form factors. Here’s one.

Using this, we can precompute a 2D LUT that contains the clipped form factors for spheres of different angular extents (0 - pi/2) and elevation angles.

At runtime we can lookup into this texture with the extent and angle we’ve calculated from F, giving us an approximation of the clipped form factor of the polygon.

clipping

Here’s the result with the original, expensive clipping.

no clipping

If we don’t do any clipping, we get darkening near to the light source (among other issues).

proxy sphere

Here’s the result with the proxy sphere. It’s pretty close to the correct result.

clipping

Here’s the original again, for comparison.

very cheap approximation

For precision reasons, it’s better to divide through by the original form factor and store a multiplier in the LUT instead.

It’s also possible to do away with the LUT entirely. John Snyder gives a couple of options involving cubic Hermite curves, but these are on the expensive side. The above
function, which calculates an approximation of the clipped sphere form factor from F, is a somewhat crude but effective alternative. The name should really be
PolygonVectorFormFactorToHorizonClippedSphereFormFactor, but there wasn’t enough space. :)

bonus: texturing

In the paper we also covered a way to do textured area lights with a prefiltered texture. For various reasons, the lookup direction we chose to use is the direction
perpendicular to the transformed polygon. While this is well behaved, it doesn’t always give accurate results (see the paper for examples).

filtered border region

We also had to add a border region to the texture to handle cases where the lookup is outside of the original texture.

use F direction for texture fetch

F

An attractive alternative, suggested by Brian Karis, is to use F for the lookup direction.

This has the advantage that the F always intersects the polygon, so we no longer need to add a border to our prefiltered texture!

Summary

• Numerical issues vanquished

• Current performance for diffuse + specular : 
0.9ms, PS4 @ 1080p

• Scaled the Dark Tower of implementation?

• Future: updated code (GitHub) and notes

Through all of these changes, we were able to combat visual quality issues and increase performance significantly.

That said, area lighting is still relatively expensive compared to point lighting, so there’s always room for further improvement.

We’ll be following up on this talk with more detailed notes – containing a few additional topics (such as Fresnel) and optimisations – and updated source code.

elephant in the room

The focus of the paper was on area lighting, but there’s still another tower to climb…

Image credit: Elephant in the Room, Barely Legal show, Banksy. © REUTERS/Fred Prouser, 2006.

…area light shadows! It’s an open research problem.

Someone should really solve this! :)

Thanks

• Jonathan Dupuy, David Neubelt

• Robert Cupisz + Unity demo team

• Brian Karis, Stephen McAuley

• Yves Jacquier, Alexandre Pichette, Olivier Pomarez

• All of you! :)

We would like to thank the following people.

References
• [Arvo95] Applications of Irradiance Tensors to the Simulation of Non-

Lambertian Phenomena, SIGGRAPH’95

• [Baum89] Improving Radiosity Solutions Through the Use of Analytically
Determined Form-Factors, SIGGRAPH’89

• [Lagarde & de Rousiers14] Physically based shading in theory and
practice: Moving Frostbite to PBR, SIGGRAPH’14

• [Lambert1760] Photometria, sive de mensura et gradibus luminus,
colorum et umbrae, 1760

• [Snyder96] Area Light Sources for Real-Time Graphics, 
Technical Report, 1996

