
LTC Fresnel Approximation
Stephen Hill

To explain our Fresnel approximation, I will start first of all with a simpler case that we will then
build upon. Let’s imagine that we have a microfacet BRDF, ρ(ωv,ωl), with shadowing-masking but
without Fresnel. Due to the presence of shadowing, the integral of the cosine-weighted BRDF over the
sphere can be less than 1 (i.e. some ‘energy’ has been lost due to shadowing):∫

Ω
ρ(ωv,ωl) cos θl dωl ≤ 1. (1)

In contrast and by design, LTCs always integrate to 1. Therefore, in order to achieve an accurate fit
of the BRDF using LTCs, we store the norm1 nD (the magnitude of the BRDF) as a scale factor, in
addition to M−1 (which captures the shape of the BRDF):

nD =

∫
Ω
ρ(ωv,ωl) cos θl dωl. (2)

As with M−1, we store nD in a 2D texture, parameterized by incident direction and roughness.
Now let’s turn our attention to Fresnel. Rather than attempting to fit LTCs to a BRDF that

directly incorporates Fresnel, we instead choose to treat the Fresnel term separately, as an additional
influence on the magnitude of the BRDF. Thus the norm becomes∫

Ω
F (ωv,ωl) ρ(ωv,ωl) cos θl dωl. (3)

Using Schlick’s approximation [Sch94], this expands to∫
Ω

[R0 + (1−R0)(1− 〈ωv,ωh〉)5] ρ(ωv,ωl) cos θl dωl, (4)

which we can rearrange to the following:

= R0

∫
Ω
ρ(ωv,ωl) cos θl dωl + (1−R0)

∫
Ω

(1− 〈ωv,ωh〉)5ρ(ωv,ωl) cos θl dωl

= R0 nD + (1−R0) fD, where fD =

∫
Ω

(1− 〈ωv,ωh〉)5ρ(ωv,ωl) cos θl dωl. (5)

Now, in addition to nD that we had before, we store a second term fD
2.

While this may seem like a coarse approximation, we found it to work very well in practice from
a visual standpoint, and it’s an approach that has already proven to be effective in the context of
environmental illumination [Kar13; Laz13]. Furthermore, this solution avoids complicating the fitting
process or increasing the dimensionality of the tabulated data.

1This is mentioned very briefly in our paper at the start of the Representation and Storage section: “Furthermore, we
use an additional parameter for the norm . . . ”.

2We could alternatively store n′
D = nD − fD, and calculate R0 n

′
D + fD at runtime, which saves an ALU instruction.

1



References

[Kar13] B. Karis. “Real Shading in Unreal Engine 4”. In: Physically Based Shading in Theory and
Practice, ACM SIGGRAPH Courses. 2013. url: http://selfshadow.com/publications/
s2013-shading-course/.

[Laz13] D. Lazarov. “Getting More Physical in Call of Duty: Black Ops II”. In: Physically Based
Shading in Theory and Practice, ACM SIGGRAPH Courses. 2013. url: http://selfshad
ow.com/publications/s2013-shading-course/.

[Sch94] C. Schlick. “An Inexpensive BRDF Model for Physically-based Rendering”. In: Computer
Graphics Forum 13.3 (Aug. 1994), pp. 233–246.

2

http://selfshadow.com/publications/s2013-shading-course/
http://selfshadow.com/publications/s2013-shading-course/
http://selfshadow.com/publications/s2013-shading-course/
http://selfshadow.com/publications/s2013-shading-course/

