
1

2

3

4

5

At Vicarious Visions we develop on platforms ranging from mobile through console to dx11.

Since we often have two or three projects running at the same time, each on multiple platforms, it is

important that we invest in shared technologies.

Just as import as being able to scale in performance, our techniques must also scale in design,

giving them the ability to compliment multiple art styles.

6

When talking about scalable effects in the context of one project there are a number of benefits we

get:

• Visual Consistency – Using the same algorithm on every platform results in similar contributions

• The visual consistency means that our artists will get the same results on each platform,

saving them the time choice of which platform to optimize for.

• Development time savings - designing and implementing robust algorithms take time and effort,

we have found that it is worth it to spend more time upfront designing for scalability than to

implement 2 algorithms

• Consistent Content Requirements – if we find that we need to make some requirements on how

assets are authored do support an algorithm we don’t want to have multiple requirements for

different platforms

• “Free” quality gains – When you have scalability designed into an algorithm you can maintain

visual consistency but increase quality as you move to new platforms and performance

restrictions are lifted.

7

When we start working on an algorithm we have a mental checklist that we continually measure or

ideas against.

An interesting exercise is to think about some algorithms that you currently have in your engine and

ask these questions.

If you are a multi-project studio or part of a central tech group the most important of the questions

here in terms of scalability is “Does it dictate an art style?” since this will limit the application of the

approach.

8

Some of the common elements we considered when designing the algorithms were:

• Quality knobs – these are simply adjustable parameters that can yield higher quality. All your

usual suspects are here like radius, sample counts, adjusting restrictions like clamps

• Resolution independence – pretty self explanatory, this one can be hard to do if you perform a lot

of bilateral blurs or nearest neighbor sampling

• Modular Functions – Especially for lower end hardware we often have to replace some function

with and approximation for performance reasons, for the quality improvements it is important to

leave the option of going back to the full formula on platforms where you have some cycles to

spare.

• Additional Processing – This is probably one that hasn’t got much thought on the real-time side of

things, but this could give you lots of quality gains if for instance you change a random seed and

re-run an algorithm to reduce aliasing or if you design a function that converges on the correct

solution each iteration.

9

Our process has evolved over the past 2 years into something that we regularly employ now.

1) Design for the lower end platform using the types of questions asked earlier

2) Optimize the algorithm for performance and integrate it into the game

3) We then revisit the higher end platforms and implement there

• By performing the optimization in between the low end and high end implementations we

give ourselves time to take a step back and re-evaluate our approach, this often leads to

major quality and performance gains

4) We take any fundamental improvements made on the higher end platform and integrate them back

into the lower end targets

5) Rinse and repeat, often changing project directions and requirements will expose or remove

constraints from the design

10

Two of the first algorithms that really helped us develop this process were Motion Blur and Ambient

Occlusion. We are going to take a closer look at where those algorithms are at right now.

11

12

Motion blur is a great effect to invest in to get a more cinematic feel for your games.

This is because motion blur is emulating the non-instantaneous shutter time of actual cameras.

It also helps reduces the strobe effect that happens when you render at frame rates under 60 fps,

giving your game a much smoother experience.

Artistically motion blur can be used very effectively to communicate a sense of speed to the player.

13

So why did we go for motion blur?

When the concepts for our game started coming in we saw many characters with exaggerated

movements, dense “living” environments, and that they would require lots scene motion to sell them.

At roughly the same time we decided that we would be targeting 30fps to support more flexibility in

our lighting. Deciding to go for motion blur at this point aligned with so many of our project goals that

it was an easy call.

14

Here is just a quick sample of what we were able to achieve with the algorithm I’m about to present

15

When we approached motion blur we decided early that we would impose some restrictions on our

solution.

• No asset requirements – We wanted to avoid as much as possible imposing new restrictions on

the content teams. At this point in the project we had already redesigned our core lighting

algorithm, material system, and animation system, we felt that any more requirements would have

just slowed down the entire team.

• Consistent for all geometry types – This speaks to the robustness of the solution, we didn’t want

to handle many different classes of geometry or potentially have visual inconsistencies between

two pieces of geo.

• Independent of scene complexity – When we started evaluating motion blur we didn’t have a clear

picture of where art was going to spend the main scene budget, we wanted to avoid algorithms

that didn’t scale well with differing scene complexities

• Minimal G-buffer encoding – With our g-buffer layouts we could really only spare 2 channels to

encode the velocity and we couldn’t spare any additional space for per-geometry data

Once we had these project constraints we evaluated numerous existing techniques but we found that

we couldn’t find one that met our list of restrictions

16

If look at what is going on under the good when something is blurring due to motion we can represent

it fairly simply.

We have an input image and a velocity at every pixel for objects in that image. We see that the

contribution of a pixel is spread out over distance represented by the velocity.

So if I can describe what is happening in 2 sentences why have a talk about how to solve it?

17

As I just described motion blur it is extremely simple to represent it as a scattering effect. The

contribution of a pixel is distributed over the area described by the velocity.

Unfortunately we need to describe motion blur as a gathering effect. Independent of performance we

could say that for each pixel loop over the entire image and find what pixels potentially overlap the

pixel in question and we should end up with a very similar results. Again this is far to slow work in

practice so we have to come up with something to make that portion of the algorithm faster.

Another problem associated with the gather technique is that objects moving no longer have the

same silhouette, their shape becomes distorted as they move faster.

To put the icing on the cake, we end up seeing what was originally occluded by the object resulting in

a transparent like effect.

18

Our approach is three pronged:

1. Dilate the velocity using screen space tiles : We chose to dilate the velocity using a tile based

approach. We found that we could do a large radius dilation efficiently

2. Sample along dilated velocity : By preprocessing the velocity into the dilated form we have also

given our selves the primary direction that we should look in when looking for contributing pixels

3. Mix samples based on velocity and depth : Finally we combine the samples in an interesting way

to simulate background estimation for achieving the transparent aspect of motion blur

When we combine the 3 things mentioned above we get a robust motion blur solution

19

20

First you will want to render a pretty traditional velocity buffer. You will want to calculate velocity in

terms of pixels in this step and then clamp it to the maximum allowable blur, you will see why this is

important as the walk through progresses. Finally you will want to take the –max to max velocity and

scale it into the 0-1 range so you can store it in 2 channels.

21

The first step of the velocity preprocessing is to find the maximum velocity in each tile on the screen.

A tile is represented by NxN pixels where N is the maximum allowable blur. As you perform this down

sample make sure you account for the remapping of the velocity when testing magnitude.

22

The second step of the velocity preprocess is to apply a 3x3 box filter on the tile max velocity texture

to find the maximum velocity in a particular region. Once this stage is done we now have a

conservative map of the regions of influence for some large scale velocities. Finally we can pass this

texture on to the reconstruction shader as you will see next.

23

The second step of the velocity preprocess is to apply a 3x3 box filter on the tile max velocity texture

to find the maximum velocity in a particular region. Once this stage is done we now have a

conservative map of the regions of influence for some large scale velocities. Finally we can pass this

texture on to the reconstruction shader as you will see next.

24

Now that we have pre processed our velocity into a W/NxH/N sized buffer it’s time to use the

information.

Looking at center sample C we first grab the depth and color of that pixel. Next we grab the high

resolution velocity from our source velocity buffer, we hold on to this because we will use it in the

comparisons in the next step. Finally we grab the maximum neighborhood velocity this will come in

handy as we choose sampling locations in the next step.

25

For this step you will want to re-expand the neighborhood velocity back into the –max – max range

and then generate some sample points along that vector (both positive and negative from center).

At each sample point you will want to get the depth, color, and high resolution velocity. We then

compare the depths to see if the sample is in the foreground or background of the center and then

apply some comparisons based on that finding.

26

To determine the foreground or background of a pixel we just applied a ramped step curve that gave

us some intermediate values when the depths were close. If you do anything with soft particles this

will look familiar.

27

Right now there are 3 cases that we really care about for the comparisons

1. Background sample

The background sample case allows us to achieve the transparent effect by

potentially treating the sample as an estimate for what is in the background of this pixel.

2. Foreground sample

The foreground samples case allows us to blur an object past the extents of its own

bounds because we allow samples from elsewhere blend overtop of the center.

3. Both samples moving

This is the general bucket that we just want something blurry because everything is

moving. We found that when you get to this point there is so much blurring going on that the eye

can’t really depict direction.

28

For the background estimation we only really need to look at the velocity of the center, determining if

it needs a background estimate at all, and the pixel distance between the center and the sample to

see if it would be feasible that they overlap. We represented this with a cone like fall off. We use the

velocity of the center as the denominator because we get less picky about background samples the

faster the object is moving.

29

For the second case we want to allow object to blur out of their extents so all we really need to do

here is ensure that the samples are overlapping. We apply a simple fall off so we get a nice fade at

the ends.

30

The last stage we simple need to validate the samples could feasibly overlap, notice how we don’t

check direction just magnitude, we found that the results were better doing this and the incorrect

blurring was not noticeable at all.

31

Finally we can generate the output pixel color. When performing the comparisons we don’t actually

treat them as mutually exclusive cases instead we determine the foreground and background weights

and use that to weight the first two contributions and for the third we just mix it in. Because we do this

we need to renormalize at the end. For the center sample you can fool around with the initial weights,

a higher weight will result in less pronounced blur regions and a lower weight will result in a more

“thick” looking motion blur.

32

So putting it all together the high level flow we capture velocity depth and color. Then we preprocess

the velocity and then finally run the reconstruction using all the source textures and the new

processed velocity to produce the final image.

33

34

1. Tune weights - The look of the motionblur is heavily determined by the weights of each of the

comparison cases and the initial weight of the center sample. This can lead to a very subtle

effect or a way over the top blur.

2. Artificial velocity – because this algorithm just operates on a normal velocity buffer you can inject

any kind of velocity you want into the buffer, this artificial velocity could come from particles, full

screen effects, special game events, or even character moves.

35

Quality scaling for this algorithm includes some usual suspects like adjusting the maximum radius,

increasing the number of samples etc.

But there is also room for other quality improvements such as sampling not only in the direction of the

neighborhood velocity but also in the direction of the tile velocity and center velocity.

I feel that you could also swap out the tile based dilate with any other dilation method to achieve

different quality results.

36

We found it worth it to pay the branch cost on current gen because we had a lot of scene with not

much motion. It would be interesting to change shaders when the engine detects that the camera is

moving since that would likely result in more motion make the branch irrelevant

We chose a checker board pattern so that the post process AA would smooth out the motion blur

contribution.

Packing the depth into the zw of the velocity texture will save you a ton on the reconstruction phase

so you should do it… really… just do it.

We wanted the effect to be relatively subtle so we chose a max blur radius of around 10px at current

gen resolutions

Even on current gen we decided to alternate samples between the center and neighbor hood velocity

to avoid artifacts at the boundaries of tiles.

37

We kept the branch on velocity since it was much less overhead in DX11

We only increase the sample count slightly because we didn’t see much of a difference when really

increasing that number

At a higher resolution we found we could get better results with a 4x4 randomized jitter so we

removed the checkerboard

We only increased the radius to maintain visual consistency at the higher resolution.

Once again we alternated samples between the center and neighborhood velocities to avoid tile

boundary artifacts

38

39

This video shows a typical game camera and you can see how the motion blur enhances the

characters movements. We have turned up the exposure time so it is more excessive that we

normally have to better show the blurring. The game is rendering at 30fps

40

This video is more of a comparison of with and without motion blur.

Notice the strobing on the right hand side as well as the perceived lower frame rate.

41

42

43

AO is a pretty standard effect in rendering at this point. There has been some great work involved in

approximating the ambient occlusion GI term. We wanted a solution that could move between

platforms for visual consistency so we decided to throw our hat in the ring.

44

Here is the kind of contribution for AO that we can achieve with the algorithm I’m about to present

45

Our project constraints for this effect were pretty generic, it needed to be about as fast as our current

VO implementation, we wanted it to be more surface aware, and we wanted to reduce aliasing as

much as possible.

46

So I’m sure you have probably seen a slide like this in the past but I’m going to quickly re-iterate the

goal with AO.

We basically want to estimate the amount of ambient incoming light that is blocked by the complexity

of the geometry.

47

The core problems in this were much more localized to scalability than motion blur. We just wanted

an algorithm that had visual consistency and we didn’t want to support and maintain two separate

algorithms

.

48

We decided that to keep up in terms of speed with our existing algorithm we would take less samples

but make them higher quality

We would base the contributions on the normal of the surface being shaded to get better surface

aware behavior

Finally we wanted to get it to a point where we could start manipulating the fall off function to get the

exact look we wanted.

49

50

For the center sample we simply reconstruct the position and normal

51

When gather sample properties we chose to just reconstruct the position of the sample.

52

We then calculate the vector between the center and sample points.

We gather information that we can apply in fall off functions by projecting the vector onto the surface

normal and getting the length of the vector.

53

The last part for the sample is figuring out the contributions of the various parameters. We

experimented a lot with this phase and determined that we liked the following function the most.

The distance portion of it is simply a linear fall off

The angular portion is really just a dot product but before normalizing the vector we apply a small

bias to avoid self shadowing

You can check out the follow up paper for more falloff options.

The important thing here is that you should try some of your own function here to get the exact look

you are going for.

54

The last step is to accumulate all the samples and introduce any artistic controls you want before

normalizing the contribution.

55

For the normals you have a couple options, the first is that you use g-buffer normals. Obviously this

only works if you have a g-buffer, if you have a forward rendered engine then you might consider

using derived normals from the depth buffer. You get some artifacts but they are lessened when you

put the contributions through a blur.

56

57

58

To make the ao contribution silky smooth push it through a depth aware bilateral blur. You should

make the filter fairly wide to avoid patterns. Even if you pack the depth in the same buffer as the AO

you still have an extra channel so you should use it to soften some of your shadows.

59

60

61

The biggest one here is the fall off functions

Depending on your falloff functions you can favor contact shadows or larger influence and everything

inbetween.

62

Because we can apply the same fall off functions just on less samples to the different platforms the

quality scalability is really good for this approach. Depending on how wide your blur is it might be

more worth it to blur the results better.

63

We get pretty great results using only 4 taps at full resolution, to make it fast we use mirrored taps

and transpose all the math to compute the 4 samples all at once. Our final shader is about 56

instructions, very comparable with VO.

64

For dx11 we up the samples and sample patterns. We also employ the depth mip trick outline in

Morgan et al. to effectively remove the screen space velocity constraint.

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

