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1 INTRODUCTION

In this paper, we describe several improvements that were made to our lit surface shaders in Call of Duty: WWII.
We detail a simple method to mipmap normal and gloss maps, by directly mapping gloss to average normal
length of a distribution, bypassing an intermediate representation, like variance (Section 2). We show how
rational functions can be a useful tool to approximate many functions that can’t be represented analytically or
e�ciently (Section 3). We discuss how to auto-generate cavity maps for every surface that has a normal map,
and show how to handle occlusion and indirect lighting in cavities represented by these textures (Section 4).
Finally, we describe how to extend the Di�use BRDF to model Lambertian microfacets with multisca�ering
(Section 5), while also showing how the environment split integral precalculation can be easily reused for energy
conservation (Section 5.3).

�ese changes allowed us to achieve a richer ambient look than previously possible, with scenes rendered during
“magic hour” (Figure 1).

Figure 1: An early version of Normandy rendered during “magic hour”.
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Figure 2: Normal maps and gloss maps represent geometric information at di�erent scales.

1.1 New Gloss Parameterization

Before we dive in, we should point out a change to how we parameterize gloss in Call of Duty: WWII. Previously,
on Call of Duty: Advanced Warfare, we used this parameterization of gloss [Cha15] for GGX [Wal+07]:

α =

√
2

2 + 216д . (1)

�is is our new parameterization of gloss:

α =

√
2

1 + 218д . (2)

Notice we allow sharper specular highlights because of the change from 16 to 18. Importantly, we also allow α
to reach 1 when gloss is 0, giving us the full range of roughness available with GGX. In other words, our gloss
value now expresses a wider range – both rougher and smoother – than before.

2 SPECULAR ALIASING: MIPMAPPING NORMAL AND GLOSS

Normal maps and gloss maps can be thought of as representing geometric information at di�erent scales. Gloss
maps store microfacet normal distributions, while normal maps store macroscale normals (Figure 2). Normals
become microfacet orientations when viewed from afar. Because of this, it makes sense to push normal map
information down into gloss maps when generating mipmaps.

If we mipmap our normal and gloss map independently, what happens is normal maps tend towards �at surfaces
as they mip, while gloss averages out. Imagine a very bumpy but highly glossy surface: as it mips into the
distance, it turns more and more mirror-like. By pushing the variation in normals into our gloss maps, we can
avoid this issue (Figure 3).

Many techniques have been proposed to combat specular aliasing (LEAN [OB10], CLEAN [Bak11], Normal
Variance [Tok04], see [Hil11] for an overview). �ese techniques typically require more channels of information,
but simpli�ed variants exist that do not add any extra channels. For example, you can use [Tok04] to estimate
variance and then use this to adjust an existing gloss channel.

Similar to these variants, we’ve taken a simpler approach that does not add any extra channels, but unlike
previous approaches, is specialized for the GGX normal distribution function (NDF). In addition, our method
�lters normals and base gloss together, such that base gloss a�ects the weighting of our normal directions, similar

2



Figure 3: Le� half is standard mipmapping of normal and gloss maps, while right half uses our technique for mipmapping normal and gloss.

to [Kar18]. �is is di�erent from the other methods, where base gloss is post-convolved with a distribution
derived from the normals.

First, notice that averaging a collection of arbitrary normals in the hemisphere (that is, summing the normals
and dividing by their count) results in a vector that may no longer be unit length. We call this the “average
normal”, or “shortened normal” (ns in Equation 3 and Figure 4), following [Tok04].

ns =
1
N

N−1∑
i=0

ni . (3)

n3 n4
n2 n5

n1 n6

n0 n7

ns

Figure 4: ns is the average of n0 through n7.

If we randomly sample the GGX NDF, generating random microfacet normals following this distribution for
speci�c gloss values [0, 255], and calculate the average normal for these distributions (Macrosurface Area model
of this technique described in Section 2.1.3, corresponding pseudocode in Listing 6) then we have a table that
relates gloss to “shortened normal” length (Listing 8).

2.1 Randomly Sampling the NDF

Why do we randomly sample the NDF? What probability density function (PDF) do we use to do so? Key to this
is understanding what D(ω), our NDF, represents and how that relates to a normal map.
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2.1.1 NDF relates to microsurface area

Given a microsurface M and points along that surface pm with corresponding normal directions ωm , we can
de�ne our D(ω) as a spatial equation using [Hei14], Equation 2:

D(ω) =

∫
M
δω (ωm(pm)) dpm, (4)

where δω is the Dirac-delta function.

From this, we can see D(ω) represents the area of the microsurface that points in direction ω. �erefore, you
can think of D(ω) as related to the microsurface area of either the normals in our normal maps, or the normals
randomly chosen from our NDF.

We can reason about how we calculate our shortened normal lengths mathematically. When accumulating
normals for averaging, we can assign a weight to each normal according to the ratio of microsurface area of that
normal to the total microsurface area.

Using [Hei14], Equation 5:
microsurface area =

∫
M

dpm =
∫
Ω
D(ω) dω, (5)

we can calculate our per-normal weight:

sω′ =
D(ω ′)∫

Ω
D(ω) dω

. (6)

�e shortened normal length of our distribution of normals (NDF) can be calculated using the integral of this
weight times the z-component of the sampled direction. �e x- and y-components will cancel out since samples
are symmetric in these dimensions, so the z-component is all that is needed to calculate shortened normal length.

ns ,micro
 = ∫

Ω
sω′ω

′
zdω ′, (7)

=

∫
Ω

D(ω ′)∫
Ω
D(ω) dω

ω ′z dω ′, (8)

=

∫
Ω
D(ω ′)ω ′z dω ′∫
Ω
D(ω) dω

. (9)

Since we use z-up, and because the z-component of the sampled direction is equivalent to the cosine of its polar
angle:

ω ′z = cosθ ′, (10)

and given the projected area of the microsurface onto the macrosurface is 1:∫
Ω
D(ω) cosθ dω = 1, (11)
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Figure 5: Microsurface facet area dAh projects to macrosurface area dA.

our shortened normal length is ns ,micro
 = 1∫

Ω
D(ω) dω

. (12)

We can see that both shortened normal length and total microsurface area relate directly to our NDF. Interest-
ingly, relating the NDF to total microsurface area provides an alternative to relating to shortened normal length.
We call this the Microsurface Area model for calculating shortened normals.

2.1.2 Normal map as microsurface

If we imagine a normal map as a microsurface, then what does each texel of the normal map represent? We can
think of each texel as a in�nitesimal microfacet oriented in the normal direction with area:

dAh =
dA

cosθ , (13)

where dA is the texel area associated with the macrosurface (Figure 5). �is gives us a way to average normals
of a normal map based on microsurface area (Algorithm 1) that relates with our calculation of shortened normal
length in Equation 12.

Algorithm 1 Averaging normals by microsurface area
1: procedure CalcAverageNormalMicro
2: averageNormal← (0, 0, 0)
3: totalWeight← 0
4: for all n in normals do
5: averageNormal← averageNormal + n

cos θ
6: totalWeight← totalWeight + 1

cos θ
7: averageNormal← averageNormal

totalWeight
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2.1.3 Normal map as macrosurface

We can also think of the normal map as a macrosurface where each texel represents a normal pertubation with
equal weighting. If this is the case, we would use a PDF based on macrosurface-projected area:

pω (ω) = D(ω) cosθ, (14)

and importance sample using this PDF. �is is the standard PDF used in importance-sampling the microfacet
equation, so is convenient to use. Using this macrosurface-projected area PDF, we can generate a lookup table
using a macrosurface-based weighting function:

tω′ =
D(ω ′) cosθ ′∫

Ω
D(ω) cosθ dω

, (15)

where we calculate the shortened normal length by, once again, taking the integral of this weight times the
z-component of the sampled direction:ns ,macro

 = ∫
Ω
tω′ω

′
z dω ′, (16)

=

∫
Ω

D(ω ′) cosθ ′∫
Ω
D(ω) cosθ dω

ω ′z dω ′, (17)

=

∫
Ω
D(ω ′) cosθ ′ω ′z dω ′. (18)

We call this the Macrosurface Area model for calculating shortened normal length. In this case, we would average
our normals without weighting by microsurace area since we are dealing with macrosurface area (Algorithm 2),
and we would relate this to the table generated by Equation 18.

Algorithm 2 Averaging normals by macrosurface area
1: procedure CalcAverageNormalMacro
2: averageNormal← (0, 0, 0)
3: totalWeight← 0
4: for all n in normals do
5: averageNormal← averageNormal + n
6: totalWeight← totalWeight + 1
7: averageNormal← averageNormal

totalWeight

It’s important to note the table we generate using Macrosurface Area is di�erent from that generated for Mi-
crosurface Area (see Figure 6 for a graph of di�erences), but we can relate both tables to their corresponding
normal averaging techniques.

2.1.4 Converting from macrosurface averaging to microsurface averaging

We can show that converting between macrosurface and microsurface models is a ma�er of applying cosθ or
its reciprocal to the weight within the integral.
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Starting with a refactored version of the Macrosurface Area shortened normal length (Equation 17):ns ,macro
 = ∫

Ω
D(ω ′) cosθ ′ω ′zdω ′∫
Ω
D(ω) cosθ dω

, (19)

we can apply the area conversion of Equation 13 ( 1
cos θ ) to the integral in the numerator and the denominator to

convert this to the shortened normal length using Microsurface Area:ns ,micro
 = ∫

Ω
D(ω ′) cosθ ′ω ′z 1

cos θ ′ dω ′∫
Ω
D(ω) cosθ 1

cos θ dω
, (20)

=

∫
Ω
D(ω ′)ω ′z dω ′∫
Ω
D(ω) dω

, (21)

=
1∫

Ω
D(ω) dω

. (22)

Converting the Microsurface Area equation to the Macrosurface Area equation is a ma�er of applying the inverse
area conversion.

2.1.5 Di�erences between microsurface and macrosurface models
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gloss
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Figure 6: Plot of gloss values to
ns ,micro

 in green and
ns ,macro

 in blue.

Figure 6 shows the di�erences in shortened normal length between the microsurface and macrosurface models.
�ese di�erences motivated further exploration of how we relate normal maps to NDFs via the microsurface
and macrosurface models.

In theory, since D(ω) relates directly to microsurface area, we should be using the Microsurface Area model. But
if we were to a�empt to correctly �lter NDFs (gloss) while rendering, we’d need to account for the microsurface
area of the facet associated with the normal (Equation 13). In other words, as we average and �lter NDF texels
in the pixel shader we would need to account for the microsurface area change due to the normal direction.
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An argument in favor of using the Macrosurface Area model – in spite of the fact that our NDF relates directly
to microsurface area – is that hardware �ltering occurs in the macrosurface domain. In other words, when using
GPU bilinear �ltering, we are averaging over pixel footprints on the macrosurface.

Assuming we are limiting ourselves to hardware �ltering, this leaves us with two solutions, neither of which
are ideal – either we use the Microsurface Area model and �lter using the incorrect area measure, or we use the
Macrosurface Area model and �lter the slightly modi�ed, but incorrect, distribution appropriately.

Normal maps are geometrically �at and represent uncorrelated facets, while the microfacet equation has various
degrees of correlation through its geometry term – i.e. there is shadowing and masking of microfacets by other
microfacets. Further research is required to understand what our goals are in rendering normal maps and the
NDFs representing those normal maps at a distance, and which of these models is closer to achieving those goals.

In Call of Duty: WWII, we used the Macrosurface Area model and all the values calculated in this paper use
macrosurface area normalization, including the values in the table relating gloss to shortened normal length. To
generate that table, we importance sampled GGX using the PDF from Equation 14.

2.1.6 Closed-form solutions to shortened normal length

While we used tables generated using importance sampling during development of Call of Duty: WWII, we
can also derive closed-form solutions to shortened normal length using both Microsurface (Equation 12) and
Macrosurface Area (Equation 18) methods:ns ,micro

 = 1∫
Ω
DGGX (ω) dω

, (23)

=
a

a + (1 − a2) tanh−1(a)
, (24)ns ,macro

 = ∫
Ω
DGGX (ω) cosθ ωz dω, (25)

=
a − (1 − a2) tanh−1(a)

a3 , (26)

wherea =
√

1 − α2. (27)

�ese closed-form solutions (C implementation in Listing 7) supersede our importance sampling method (List-
ing 6) since they are faster and more accurate.

2.2 Mipmapping Process

Using our gloss to shortened normal length table, we can construct a shortened normal map where each pixel
represents both the normal, through the direction of the vector, and gloss, through the length of the vector.
An interesting property of a shortened normal map is that �ltering of the map is meaningful – for example,
the average of shortened normals is equivalent to averaging the individual (Macrosurface Area model) NDFs
associated with the shortened normals. Also notice the �ltered normal direction is weighted according to normal
distribution since we are not merely �ltering unit normals. Averaging between a glossy normal pointing one
direction and a rough normal pointing another will result in a normal closer to the glossy normal direction; as it
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Figure 7: From le� to right: (a) Gloss map representing per-pixel NDF (rough le� pixel, smooth right pixel), (b) normal map, (c) normal
and gloss combined represents the macro and micro-surface details, (d) the broader NDF on the le� is represented by a shortened normal,
(e) mipmapping generates a shortened normal that is the average of the two original shortened normals, and (f) this shortened normal
represents the mipmapped normal direction and gloss (NDF).

should, since the distribution of normals favors that direction (the mipmapped normal points more to the right
in Figure 7).

If we were able to encode these shortened normal maps such that we could calculate their lengths down to six
base-10 digits of precision (see the last several normal lengths in the table in Listing 8), we could pass these
shortened normals directly to the GPU and take advantage of hardware (e.g. bilinear) �ltering. �en, in the pixel
shader, we could reconstruct gloss from the length of the shortened normal using a �t curve (Section 3.1), or
more likely we’d convert straight to α or α2 for GGX. Unfortunately, half precision �oating point with BC6H is
not enough and uncompressed 16- and 32-bit formats are too memory intensive.

Instead, a�er generating the mipmaps of the shortened normals, we calculate the gloss from the length of the
shortened normal and renormalize. We chose to store our normals as a BC5S, and our gloss separately as a single
channel in a composited texture which also holds metalness and material surface occlusion (Section 4). Run-time
�ltering of normals and gloss independently is not quite the same as �ltering shortened normals, but it’s a close
approximation. Algorithm 3 outlines the steps performed in mipmapping our normal and gloss maps.

Algorithm 3 Pseudocode for mipmapping normal and gloss maps
1: procedureMipmapNormalAndGlossMap(N , G)
2: for all pixels N (x,y) in N do
3: len ← GlossToNormalLength(G(x,y))
4: N (x,y) ← len × N (x,y)

5: NM ←Mipmap(N ) . returns an array of images
6: for all mipmaps NM [i] in NM do
7: for all pixels NM [i](x,y) in NM [i] do
8: GM [i](x,y) ← NormalLengthToGloss(NM [i](x,y))
9: NM [i](x,y) ← Normalize(NM [i](x,y))

10: return NM , GM

Figure 8 shows an authored gloss map of 255
255 and the generated mipmaps from our technique. �e lower mips

encode higher normal variation and are darker, representing lower gloss values.

Figure 9 shows the result of pushing normal variation into gloss (le�) and a comparison against the same surface
rendered up close and bilinearly downsampled (right).
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Figure 8: MIP 0 through 5 of a demonstration glossmap. �e lower resolution mips to the right get darker to represent more normal
map normal variation.

Figure 9: Le�: Surface rendered in the distance. Right: Bilinear downsample of surface up close.

2.3 Representation

When thinking about normal maps, what exactly do they represent? Do normal map pixels represent facets of a
faceted surface, or are they samples from a continuous smooth surface (Figure 10)? In fact, you can ask the same
question about gloss: does it represent consistent gloss across the entire pixel footprint, or does it represent a
gloss sample at the pixel center?

�e answer to these questions changes how we treat authored normals and gloss at MIP 0, our highest source
resolution. For this project, we treated the normals as facets. �is was mostly an authoring decision – we didn’t
want to alter the artist-authored MIP 0 texture, so we consider normals as representing a faceted surface.

You could easily make the argument that normals represent a smooth surface. In that case, you would modify
your MIP 0 gloss to take into account the NDF across the entire pixel footprint. A simple approximation is
to generate shortened normals at random within the pixel footprint, interpolating the normal directions, then
averaging them. Going further, you could use a �lter kernel to determine the facetedness/smoothness of pixel
areas, e.g. large changes in normal direction represent a faceted edge.
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It’s important to note the smooth surface idea falls apart under magni�cation without some further modi�ca-
tions. Under magni�cation the rendered pixel footprint might not cover the full extent of the source normal and
gloss map, so the underlying normal distribution wouldn’t be as broad.

Figure 10: Le�: Faceted interpretation of normals. Right: continuous surface interpretation of normals.

�e issue with any approximate technique like this is that it can’t represent the full composite NDF – it represents
a complex NDF with the closest match constrained by our shading model (see Figure 7), which only uses one
dimension for gloss. Future directions might be to provide kurtosis (haze) control, anisotropic support, or to
model NDFs more fully, e.g. [Yan+14; Jak+14].

2.4 Detail Normal Gloss

We run into an issue when we use detail normal maps. As detail normal maps recede into the distance and mip
to lower resolutions, their normal variation is represented in a detail gloss channel. How, then, do we combine
this detail gloss with our base gloss?

We need to de�ne the gloss combining step. We imagine this as choosing a normal at random from our detail
NDF, rotating our random detail normal into the space of a randomly chosen normal from our base NDF. We do
this many times and calculate a shortened normal for this new distribution.

Given two NDFs, A and B, we can randomly sample from each of them individually to calculate our shortened
normals, na and nb :

na =
1
N

N∑
i=1

na,i , (28)

nb =
1
M

M∑
j=1

nb , j . (29)

Our gloss combining step is equivalent to randomly sampling from one distribution, and rotating into the space
de�ned by randomly sampling from the other distribution:

ns =
1
M

M∑
j=1

(
1
N

N∑
i=1

na,i |b , j

)
, (30)

where na,i |b , j is na,i rotated into the space of nb , j .
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�e length of the shortened normal from the inner sum is 1
N

N∑
i=1

na,i |b , j

 =
 1
N

N∑
i=1

na,i

 = ‖na ‖ . (31)

�e outer sum is equivalent to summing vectors with length ‖na ‖:

ns =
1
M

M∑
j=1

(
‖na ‖ nb , j

)
(32)

= ‖na ‖
1
M

M∑
j=1

nb , j . (33)

‖ns ‖ = ‖na ‖ ‖nb ‖ . (34)

In order to combine gloss, then, we multiply shortened normal lengths of A and B and convert back to gloss.
�is ignores any normal direction variation that comes from the averaging of detail normals, i.e. we assume that
the gloss values we are combining are along the same normal.

We generate a 32 × 32 lookup table (LUT) and then perform a rational function �t (Figure 11), which results in
the equations below (shader code in Listing 2). We can reduce the degrees of freedom of the rational function
�t because the two dimensions/arguments are symmetric/reciprocal, i.e. we can swap the two arguments.

P(a,b) = −0.535580 + 1.002204 (a + b) − 0.223910 (a2 + b2) + 13.323150a b (35)
Q(a,b) = 1.0 + 8.259559 (a + b) + 9.896132 (a2 + b2) − 22.015902a b (36)

д = clamp
(
P(a,b)

Q(a,b)
, 0, 1

)
. (37)

Figure 11: From le� to right: Gloss Combine (RNM) lookup table, Gloss Combine (RNM) approximated using rational function, normalized
di�erence between lookup table and rational function.

Our normal maps are not blended using Reoriented Normal Maps (RNM) [BH12], which is the assumption for
the LUT built above. Instead our normals are blended by adding the detail normal o�sets (X and Y) to the base
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Algorithm 4 Combining base and detail normals using BlendXY
1: procedure CombineNormals(B,D)
2: Cx ← Bx + Dx
3: Cy ← By + Dy

4: Cz ←

√
max

(
1 −C2

x −C
2
y , 0

)
5: return C

normal o�sets, and then recalculating Z – we call this method BlendXY (Algorithm 4). We use our RNM-based
LUT in spite of this, since both methods combine gloss similarly; we compared the generated tables for both
methods and they are very close.

In order to validate this approach of multiplying shortened normal lengths, we’ve also generated LUTs using a
brute force approach where we randomly sample from both NDFs and combine the normals as we would a base
normal and detail normal, using either RNM or BlendXY. Averaging a large number of these normals from the
new NDF, and converting to gloss, we end up with the same results, in the case of RNM, and very similar results
for BlendXY.

3 RATIONAL FUNCTION FITTING

Fi�ing functions using rational functions for rendering was introduced in [Sch94].

FSchlick(v, h) = F0 + (1 − F0) (1 − v · h)5. (38)

�is is the paper that introduced Schlick Fresnel (Equation 38), which is widely used in physically based render-
ing. In my opinion though, the more important takeaway was the use of rational function approximations, and
the idea of kernel conditions.

A rational function is an algebraic fraction of polynomials. Here’s a simple example:

f (x) =
c0 + c1x + c2x

2 + c3x
3

1 + c4x + c5x2 . (39)

Kernel conditions are a key idea when performing a �t, in that we ask: What are the salient characteristics of
the function we are ��ing? What makes this function special? �en, we shape our approximation to hit these
targets. While the paper called these “kernel conditions”, we prefer to use the term “constraints”.

Notice the rational functions we use have 1.0 as the constant term in the denominator polynomial, to remove
an unnecessary degree of freedom. �is also gives us an easy way to �x the constraint when x = 0, f (0) = c0.

3.1 Example 1D Rational Function Fit

Section 2 discusses our method for normal and gloss mipmapping to combat specular aliasing. As part of that
process we generate a table that relates gloss to shortened normal length (Listing 8). We use this table directly
to evaluate GlossToNormalLength and NormalLengthToGloss in Algorithm 3.
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Notice we can also use the closed-form solution (Equation 26) to evaluate GlossToNormalLength. As an
alternative, we are going to perform a rational function �t of the table (Listing 8) purely as a demonstration of
the e�ectiveness of this technique. First, we will �t without constraints, and then we will re�t it with constraints.
Figure 12 shows this graph of gloss to average normal length, along with the rational function �t.
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Figure 12: X-axis is gloss, while Y-axis is average normal length. Right image shows rational function �t in red.

Using FindFit in Mathematica on our table, and the rational function form of Equation 39, we get this rational
function approximation:

f (x) =
0.66693 + 0.0609009x + 7.32398x2 + 0.600464x3

1 − 1.13467x + 8.78264x2 . (40)

�is is a simple example without constraints, but what if we wanted �t our curve with some constraints? Since
f (0) = 0.66667, we know that c0 = 0.66667. We are, in e�ect, �xing the start point of the curve. �is removes
one degree of freedom. We wouldn’t necessarily consider this a true constraint for this function since we can
accept some error at this end of the curve, but we are doing this as a demonstration.

We also know f (1) = 0.999958, our other constraint. Unlike the previous constraint, this constraint is important
since small errors at this end of the curve can lead to large errors when evaluating gloss for shortened normals
generated with this curve. With this, we are �xing the right end of the curve.

With some rearranging we can remove c3 – this is an arbitrary choice, we could remove any of the other coe�-
cients – by specifying c3 as a function of the remaining coe�cients.

c3 = (0.999958 − 0.66667) − c1 − c2 + 0.999958c4 + 0.999958c5. (41)

Using FindFit again in Mathematica gives us our �nal rational function approximation (right image in Fig-
ure 12):

f (x) =
0.66667 + 0.0942205x + 7.41935x2 + 0.567111x3

1 − 1.0881x + 8.83582x2 . (42)

4 MATERIAL SURFACE OCCLUSION

A common complaint by our artists is that things look �at when in shadow.

We have solutions for geometric occlusion, in the form of SSAO (GTAO and variants), MDAO (medium distance
AO, cone tracing + occlusion volume texture) and per-vertex bent normals to encode self visibility, but we
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are missing proper material surface occlusion. Cavities and bumps de�ned by the normal map should occlude
indirect light and if possible, direct light as well, for self-shadowing.

How do we generate material surface occlusion? We start with the authored normal map and we generate a
height map from it using relaxation (Section 4.2). �en, we generate an occlusion map from the height map
using GTAO (Section 4.3). Since we do all of this during an o�ine material conversion step, we’ve created a C++
wrapper to be able to compile the GTAO shader code as C++.

4.1 Generating a Height Map from a Normal Map

To go from normal map to occlusion map, we �rst generate an intermediate height map corresponding to the
normal map (Figure 13).

It’s important to start with a well-authored normal map. �e maps that work the best are ones that are captured
using photogrammetry. Normal maps that are painted or modi�ed using normal mapping tools can many times
be “impossible” normal maps, that is, normal maps that don’t correspond to any real surface. In these cases,
there is no height map that can be created that matches the normal map. If we then use the generated height
map for displacement and the normal map for lighting, as is the case with our Tessellation and Displacement
systems, we will get unrealistic lighting.

One solution to the height map from normal map problem is to solve a linear system using traditional means [Cou04],
but this is slow and scales poorly with texture size. Another solution, from Dmitriev and Makarov [DM11], as-
sumes that the integral of height di�erences is zero, and their method processes each pixel individually.

Figure 13: From le� to right: Brick rubble normal map, the height map generated from the normal map, and the occlusion map generated
from the height map.

4.2 Relaxation

Instead we perform the process iteratively via relaxation, where we choose each pixel randomly and calculate
the height it should be at given the heights of its neighbors and the height di�erences from its neighbors. A�er
many iterations of adjusting single pixels, the height of each pixel converges towards a solution.
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�is brute force approach can be very slow, so our technique re�nes its heights up through the mip-chain, solving
lower resolution mips and using those solutions as the �rst estimate for the next higher mip (Algorithm 5).
During our discussions, we found [Kol15], which is also very similar and serves as a good description of the
technique.

Algorithm 5 Simpli�ed pseudocode for converting normal maps to height maps
1: procedure BuildDxDyMaps(N)
2: for all pixels n ← N (x,y) do
3: Dx(x,y) ← −n .x

n .z
4: Dy(x,y) ←

−n .y
n .z

5: return Dx and Dy
6: procedure BuildHeightFromDxDy(Dx, Dy)
7: Downsample Dx and Dy maps to 1

2 -resolution Dx ′ and Dy ′

8: H ′← BuildHeightFromDxDy(Dx ′,Dy ′)
9: Upsample H ′ to full-resolution H

10: repeat
11: for all pixels H (x,y) do
12: L← H (x − 1,y) + Dx(x − 1,y)
13: R ← H (x + 1,y) + Dx(x,y)
14: U ← H (x,y − 1) + Dy(x,y − 1)
15: D ← H (x,y + 1) + Dy(x,y)
16: H ′′(x,y) ← 1

4 (L + R +U + D) . Normals represent slopes down and to the right.
17: H ← H ′′

18: until convergence
19: return H

4.3 Generating an Occlusion Map from a Height Map

A�er building a height map from normals, we can build the occlusion map from the height map by calling into
GTAO.hlsl [Jim+16], using a wrapper �le, hlsl2cpp.h, which provides HLSL features to C++. GTAO normally
acts on a depth bu�er generated using a perspective projection, but the author of GTAO made modi�cations to
allow it to be used on orthographic depth.

Once we have an occlusion value in the shader – which is actually visibility since 1.0 means “no occlusion” – we
can modulate indirect di�use lighting by this term. Also, since this occlusion term is a cosine-weighted integral
of visibility, we can convert to an equivalent cone angle for use in direct lighting a�enuation. But �rst, we’re
going to discuss an adjustment to our ambient occlusion.

4.4 Adjustment of Ambient Occlusion Value

A problem with the standard formulation of ambient occlusion is that occluded directions are assumed to be
black, i.e. there is no incoming light from occluded directions.
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Figure 14: Brick rubble in shadow, clockwise from top-le�: Di�use albedo only, raw material surface occlusion values, render with no
material surface occlusion, render with material surface occlusion.

We typically de�ne ambient occlusion at point p as

Ap =
1
π

∫
Ω
Vp,ω cosθ dω, (43)

whereVp,ω is the visibility function fromp in the directionω for some �nite distanced . �en, assuming our point
is in shadow and only a�ected by indirect light, outgoing radiance for a Lambertian surface would typically be
calculated using

Lp =
ρ

π
EpAp, (44)

where ρ is the albedo of the surface and Ep is irradiance. Since Ap is the cosine-weighted integral of visibility
over the hemisphere, occluded directions don’t contribute at all to its �nal radiance.

�is is a poor approximation to what actually happens in the real world and we can reformulate ambient occlu-
sion using be�er assumptions about our lighting environment.

To keep our equations simple, we will assume a white furnace environment of radiance 1, where black, the
radiance in occluded directions, is 0. We can see that ambient occlusion can be formulated as

A′p = 0 (1 −Ap ) + 1 (Ap ). (45)

Now we can reformulate ambient occlusion, depending on the following assumptions about the occluded direc-
tions.

Occluded directions have white di�use albedo and are occluded similarly:

A′p = Ap (1 −Ap ) + 1 (Ap ). (46)
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Occluded directions have the same di�use albedo, but are unoccluded:

A′p = ρ (1 −Ap ) + 1 (Ap ). (47)

Occluded directions have the same di�use color, and are occluded similarly:

A′p = ρAp (1 −Ap ) + 1 (Ap ). (48)

Going further, we can use the interre�ection model of [SL96] and assume that the radiance of the occluded
directions is equal to the outgoing radiance of the pixel being shaded.

Figure 15: Graph of e�ect of albedo ρ on adjusted ambient occlusion A′p .

Figure 15 shows how adjusted ambient occlusion A′p is a�ected by the di�use albedo of the point being shaded,
assuming the interre�ection model of Equation 48. Notice when albedo ρ is zero, ambient occlusion remains
unchanged since occluded directions are still black. As albedo ρ increases, adjusted ambient occlusion A′p tends
to be less pronounced.

A′p =
Ap

1 − ρ + ρAp
. (49)

�e challenge now is how to author di�use textures. Previously, artists needed to bake some occlusion into our
di�use textures, since we didn’t have material surface occlusion. Now that we auto-generate material surface
occlusion, these textures should be strictly di�use albedo. �is is a change in how we visualize and author them.

4.5 Converting Visibility Value to Equivalent Cone Angle

It is fairly straightforward to convert from a visibility term to the equivalent cone angle. [Jim+16] has a formu-
lation using integrals, but we can also reason about this geometrically.

Using the Nusselt analog [Wik], we can relate the area of a disk C to the unit disk as “cosine-weighted visibility”

18



(Equation 50) and the disk C projected up to the hemisphere representing the equivalent cone (Figure 16).

cos-weighted visibility
hemisphere visibility =

area of disk C

area of unit disk (50)

V

1 =
πr 2

π
(51)

V = r 2. (52)

r , then, is the radius of disk C and the projected cone and we can relate that to cone angle:

r = sinθ (53)
V = sin2 θ (54)
V = 1 − cos2 θ (55)

cosθ =
√

1 −V . (56)

Figure 16: Disk C.

Figure 17 shows the e�ect of using material surface occlusion for direct light shadowing in the rightmost image.

Figure 17: Brick rubble in the sun, from le� to right: Raw material surface occlusion values, render with no material surface occlusion,
render with material surface occlusion, render with material surface occlusion to approximate primary light shadowing.
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4.6 Cone-Based Direct Light Occlusion

Now we have a method of relating ambient visibility to cone angle, we can apply this to shadow direct lighting.

visl =

{
1 if cosθ < n · l,
0 otherwise.

(57)

Since this normal-oriented cone is a poor approximation of the actual directional visibility of the point being
rendered, self-shadowing using Equation 57 looks poor (Figure 18, top-right).

Figure 18: Equivalent cone for direct light shadowing, clockwise from top-le�: cone is not used; cone is used as exact visibility function
(notice the dark splotches); cone has a smooth fallo�: n·l

cosθ ; cone has a sharper fallo�:
(

n·l
cosθ

)2
.

Instead, we apply an ad hoc fallo� to the lighting following a scaled n · l factor from the edge of the cone to 90
degrees (see Listing 4 for shader code).

visl = clamp
(
n · l
cosθ , 0, 1

)2
. (58)

Since this fallo� is ad hoc, in the future we could reformulate this as a function of V and avoid the square root
in calculating a precise cosθ .

[BM16] does something similar, applying what they call “Micro Shadows” using their own ad hoc fallo� tied
to AO maps that are not necessarily authored consistently. Since we generate our AO maps using GTAO, our
fallo� can be based on the equivalent cone angle.

GPU-based Tessellation and Displacement (T&D) biases shadow map rendering to avoid z-�ghting, so using
some sort of cone-based occlusion should help with the direct lighting of these surfaces.
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Also, in theory, our SSAO technique (we use GTAO) will pick up the geometric occlusion of T&D, so we should
omit applying the occlusion map to indirect lighting for GPU T&D. In practice, we take the min of occlusion
values generated by GTAO and Material Surface Occlusion. �is is not ideal since GTAO and Material Surface
Occlusion can o�en represent occlusion at di�erent scales. In the future, we may explore other methods of
combining these values.

4.7 Cone-Based Indirect Light Specular Occlusion

Given a visibility cone, we can also a�enuate our indirect specular contribution. If the cone represented exact
visibility, we’d need to integrate our specular BRDF against this cone to determine how much specular light
reaches the eye.

Integrating our Specular BRDF against the visibility cone gives this 32 × 32 × 8 environment lookup table (Fig-
ure 19). �is table is just an extension of the 2D lookup table of [Kar13], which we used in Call of Duty: Advanced
Warfare, into a third dimension: cone angle. [Jim+16] presents a similar extension, going further and using bent-
normals for more accuracy. We use the same technique for generating our LUT as before, importance sampling
the GGX NDF, except now we reject samples that fall outside the cone.

�e le�-most slice in the table represents a completely unoccluded cone (the full hemisphere) and is equivalent
to the 2D lookup table we used previously. �e right-most slice represents a completely occluded cone (θ = 0);
notice it is completely black.

Figure 19: An environment BRDF lookup table that takes specular occlusion into account. Each slice represents a di�erent cone angle.

Unfortunately, a normal-centered cone is not a good approximation to actual directional-dependent occlusion.
For low gloss surfaces, it works well enough since there is signi�cant overlap between the BRDF lobe and the
cone at most angles, but as gloss increases, the probability and extent of overlap decreases. We see this issue in
practice as well, with glossy surfaces ge�ing unnaturally occluded (Figure 20).

Because of this, we use an ad hoc adjustment of cone angle to bias the lookup towards a completely unoccluded
cone as gloss increases. It also takes into account the viewing angle of the surface. �is adjustment was tuned
by eye.

cosθ ′ = cosθ (1 − дloss2)(1 − (1 − (n · v)4)). (59)

Unfortunately, using this adjustment alone still resulted in over-occlusion of glossy player (viewmodel) weapons,
because we always view their surfaces at extreme grazing angles. Because of this, we biased our дloss before
applying Equation 59 using

дloss ′ = clamp(1.5дloss, 0, 1). (60)

While this �xes issues with glossy player weapons, this results in the right image in Figure 20, which shows
a lack of specular occlusion. �is is what we shipped with in game, but in the future, we may apply Equa-
tion 60 selectively only on materials that require it. See Listing 3 for shader code. �is ad hoc adjustment
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Figure 20: A box on a puddle of water. Notice the di�erences in specular response on the water. Le�: an example of an over-occlusion
artifact from using a normal-centered cone as an approximation to occlusion, Right: using an adjustment to the cone angle based on gloss
and viewing angle and biasing gloss before the adjustment so that glossy surfaces don’t apply specular occlusionm, which leads to under-
occlusion.

might be improved by reasoning about the probability that the cone occlusion is a good approximation to actual
directional-dependent occlusion, given gloss.

4.8 Future Directions

�e behavior of our cone-based direct light a�enuation should match the implicit microfacet shadowing that
occurs in our Multisca�ering Di�use BRDF. Ideally, an area spot meter measurement of a bumpy surface in our
game which includes the microshadowing from our cone-based occlusion will match that same bumpy surface
in the distance a�er the normal map detail gets pushed into the lower resolution gloss maps (Section 2). �is
may require some amount of parallax mapping so that micro-masked areas are not rendered.

We can also validate our cone-based specular occlusion against reference renders to improve the accuracy of
our approximation.

5 MULTISCATTERING DIFFUSE BRDF

5.1 Rough Surfaces

During Call of Duty: Advanced Warfare, we measured the brightness of rough surfaces using a spotmeter from
di�erent angles and noticed behavior that is at odds with our expectations [Cha15].

Normally, we’d expect surfaces to be brightest when the light is glancing o� the surface and we are looking
towards the light; the specular re�ection in this case is strongest. But this is not consistent with our brightness
measurements for rough surfaces. �e right-most image in Figure 21 represents this lighting setup and the rough
surface appears darkest here.

How do we explain this? Figure 22 shows how a bumpy surface can both cause shadowing and a retrore�ective
e�ect, and visual inspection of the bumpy wall in Figure 21 seems to con�rm that these e�ects are present.
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Figure 21: Unexpected measurements made at di�erent angles to a bumpy wall. At far le�, the wall is brightest (15EV) when light is behind
the viewer.

Figure 22: Extreme example of lighting a bumpy surface. Observer A sees the surface as lit while observer B sees the surface as shadowed.

5.2 Smooth Surfaces

[WNO98] had several observations about the di�use response of rough and smooth surfaces. �ey noticed
a �a�ening of lighting for rough surfaces, which is by-product of the retrore�ective and shadowing e�ects
discussed earlier. In addition, they saw the opposite of �a�ening, a “rounding”, of lighting for smooth surfaces.

We can explain this rounding using energy conservation: re�ected specular light is unavailable for di�use light-
ing, therefore for smooth surfaces at grazing angles, where specular re�ectance is highest, the light available for
di�use re�ectance is lowest.

5.3 Energy Conservation

In order to achieve a rounding of lighting, we tried applying energy conservation to our BRDF with Lambertian
di�use, where energy re�ected specularly is not available for di�use re�ectance. Figure 23 shows the e�ect of
this energy conservation, where glossy materials have a smoother light fallo�. Our �nal Multisca�ering Di�use
BRDF has energy conservation built in, assuming an F0 = 0.04, and it has similar properties to Lambert with
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energy conservation.

Figure 23: Top row, from le� to right: Lambertian di�use with no energy conservation, Lambertian di�use with energy conservation, and
ampli�ed di�erence. Bo�om row, from le� to right: Lambertian di�use with no energy conservation, Multisca�ering di�use, which models
energy conservation with �xed F0 = 0.04, and ampli�ed di�erence. Notice the smoother light fallo� in the energy conserving models
because of the glossy surface.

We sample from our EnvBrdfLut to determine how much energy is re�ected towards the eye during our cal-
culation of indirect specular contribution [Kar13]. In order to calculate the direct light energy lost to specular
re�ection, we can sample from our EnvBrdfLut a second time, this time passing in n · l instead of n · v. We can
do this because BRDFs are reciprocal, so our EnvBrdfLut, which we normally use to calculate the percentage of
gathered light re�ected towards the eye, can also be used to calculate the percentage of sca�ered light re�ected
from the light source.

Since we ended up using the Multisca�ering Di�use BRDF described next, we didn’t apply this explicit energy
conservation. See Listing 5 for energy conservation shader code.

5.4 Multiple-Sca�ering Microfacet Model

What do we want from a new di�use lighting model? In addition to the properties mentioned above, we’d like
the normal distribution of the surface for di�use to be the same as that for specular. In this way, the glossiness
of the surface a�ects both specular and di�use response.
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Heitz and Dupuy [HD15] chose to model rough di�use response using the microfacets themselves as Lambertian
di�use re�ectors. �ere is an argument against modeling di�use re�ectance in this way: depending on scale,
di�usion distance means the receiving microfacet may not be the re-emi�ing microfacet for a photon. In spite
of this, we use this model as a foundation since it is consistent in its treatment of microfacets.

We used a multiple-sca�ering microfacet model [Hei+16] to simulate multisca�ering di�use with microfacets
following the GGX normal distribution function. Since we simulate multisca�ering, energy re�ected di�usely
can be reabsorbed by neighboring microfacets and re�ected di�usely again.

�ere are a couple of di�erences between our simulation and that of [Hei+16]. Our multisca�ering simulation
always bounces 100% of the light, so doesn’t have the successive color saturation for later bounces that [Hei+16]
had. �is is a simpli�cation of the model to reduce the dimensionality of the �t that we apply later. We also
modi�ed the model by adding a di�use Fresnel component to each bounce, simulating the energy loss to specular
re�ectance.

For this di�use Fresnel component, we look to [Shi+97], which models a perfectly polished surface with an
underlying “ma�e component”, which is exactly what we are a�empting to model when we re�ect light at the
individual microfacet level.

Importantly, we discovered that Equation 4 of [Shi+97] has an error1 and the correct version is

k =
21

20π (1 − F0). (61)

Our microfacet di�use Fresnel response is then

Fd =
21

20π (1 − F0)(1 − (1 − n · l)5)(1 − (1 − n · v)5). (62)

A�er simulation, we realized the characteristics we are looking for naturally fall out of this new model:

• Fla�ening of di�use lighting for rough surfaces from grazing angle retrore�ectivity (Figure 24)

• Rounding of di�use lighting for glossy surfaces from loss of energy to specular re�ection (Figure 25)

We also evaluated two other di�use models: Oren-Nayar [ON94; Fuj12] and Disney [Bur12]. While Oren-Nayar
gave a good retrore�ective e�ect for rough surfaces, it becomes Lambertian for smooth surfaces, thereby failing
to give us the rounding of lighting that we want. Disney’s di�use model (herea�er Disney Di�use) has both these
characteristics, but is unrealistic because its albedo exceeds one. Disney Di�use is a good compromise between
e�ciency, physically plausibility and aesthetic concerns though, and we use the model for our sand shader since
our artists thought sand looked more appealing in shadow using it, due to enhanced contrast.

5.5 Generating the BRDF Tables

Since simulating the bounce of photons using the multiple-sca�ering microfacet model is so processor intensive,
SN-DBS was used to generate the large tables corresponding to the BRDF response over the hemisphere. We
generated �les using the MERL [Mat+03] parameterization so we could load them into BRDF Explorer.

1�ere should be a multiplication by 1 − F0 instead of a division.
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Figure 24: From le� to right: Rough di�use (gloss=0) Lambert, Oren-Nayar, Disney, Multisca�ering and a scaled-up comparison of Multi-
sca�ering (bo�om-le�) and Lambert (upper-right). Notice the �a�ening of lighting in the non-Lambertian models compared to Lambert.
Also notice the relative brightnesses of the rough concrete �oor in all the images. �is lighting scenario is closest to the le�-most image in
Figure 21.

Figure 25: From le� to right: Smooth di�use (gloss=1) Lambert, Oren-Nayar, Disney Di�use, Multisca�ering and a scaled-up comparsion of
Multisca�ering (bo�om-le�) and Lambert (top-right). Notice the rounding of lighting in Disney and Multisca�ering compared to Lambert,
resulting in a darkening of the underside of the sphere and the top of the base on the right side.

Figure 26: �e le�-side (yellow) of each rendered sphere is Lambertian Di�use, while the right-side (cyan) is the full Multisca�ering Di�use
BRDF. From le� to right: gloss = 0

255 , 0
255 , 120

255 , 180
255 , 240

255 .

Figure 26 shows a comparison of Lambertian Di�use with the full Multisca�ering Di�use BRDF. Notice the
“�a�ening” of lighting with rougher surfaces, while the opposite occurs on smoother surfaces – what we call a
“rounding” of lighting.

In Figures 27, 28, and 29, notice the stepped nature of the full BRDF table. �is is because of the MERL parameteri-
zation, which assigns more samples towards the re�ected direction. In contrast, our BRDF slice parameterization
is equal angle. We’ve augmented BRDF Explorer to read 90×90 pixel Portable Float Map (PFM) �les representing
the BRDF slice, which we discuss below.
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Figure 27: From le� to right: Rough di�use (gloss=0) θv plots, 0°, 30°, 60°, 90°. Constant blue line is Lambert, red is full BRDF table, and
green is approximation using BRDF slice.

Figure 28: Clockwise from top-le�: Rough di�use (gloss=0) polar plots, incident light 0°, 60°, 85°, 90°. Cyan is incident light direction. Blue
is Lambert, red is full BRDF table, and green is approximation using BRDF slice. Notice the grazing angle retrore�ectivity.

Figure 29: From le� to right: θh plots, showing high grazing angle retrore�ectivity for low gloss, gloss = 0
255 , 60

255 , 120
255 , 180

255 , 240
255 . Constant

blue line is Lambert, red is full BRDF table, and green is approximation using BRDF slice.

5.6 BRDF Slice

Our �rst step was to reduce the dimensionality of the problem. Using BRDF slices is touched upon brie�y in
[Bur12]. It turns out that parameterizing the BRDF as a two-dimensional slice on θh , i.e. arccos(n · h), and θd ,
i.e. arccos(l ·h), results in a good approximation to the BRDF. Most of the behavior of the BRDF comes from this
slice at ϕd = 90. If you view the BRDF slice in BRDF Explorer you will notice that this is mostly true, that other
slices of the BRDF – representing other ϕd – are just squished versions of this slice.

�e le� slice in Figure 30 shows the BRDF slice of our Di�use Multisca�ering BRDF approximation. �is slice
representation lends itself to visual interpretation. �e important characteristic of our di�use BRDF for rough
surfaces is the grazing retrore�ection. �e right slice in Figure 30 represents our non-cloth BRDF, including
GGX specular. In that slice the le� edge represents the specular peak, while the top edge represents the Fresnel
peak.

Other papers have explored parameterizing other BRDFs in this way. Notably, [Pac+12] did this and then ap-
proximated the slice using a rational function. �is is the strategy we initially employed – in this case, applying
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Figure 30: Le�: An example BRDF slice of our Multisca�ering BRDF approximation. Notice the high grazing retrore�ectivity. Right: A
BRDF slice of our full BRDF, including GGX specular for a moderately glossy material. Notice the specular and Fresnel peaks.

it to our Multisca�ering Di�use BRDF.

5.7 2D Rational Function Fit of the BRDF Slice

Given the e�ectiveness of rational functions at approximating many of the functions we encounter in rendering,
our �rst experiments involved using rational functions to �t the BRDF slice. We performed these �ts using C++
code utilizing both NLopt [Joh], and a Di�erential Evolution (for an overview see [PI15]) routine. �is lead to
almost perfect matches for gloss = 0 when we were ��ing to a 2D rational function (Equation 63, and Figure 31).
Unfortunately, once we added another dimension for gloss, i.e. we tried to create a function f (n · h, l · h,дloss),
the coe�cient count went up dramatically if we wanted to maintain low error.

f (x,y) =
0.568 − 0.692x − 0.938y + 1.326x2 + 0.301y2 + 1.96xy − 0.98x3 + 1.533y3

1.0 + 1.731x − 0.997y − 0.998x2 − 0.843y2 + 9.905xy − 0.971x3 + 0.948y3 , (63)

where x = n · h and y = l · h.

Figure 31: From le� to right: albedo, θh , θd , θv , polar plots of Di�use BRDF with gloss = 0. Green is BRDF slice, red is rational function �t.
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5.8 Hand-Fi�ing the BRDF Slice

A�er some experimenting, we found that hand-��ing the BRDF provided good results, allowing larger errors
where it is less obvious, and maintaining the important characteristics of the function:

f0 = l · h + (1 − l · h)5, (64)
f1 = (1 − 0.75(1 − n · l)5)(1 − 0.75(1 − n · v)5), (65)
t = clamp(2.2д − 0.5, 0, 1), (66)
fd = f0 + (f1 − f0)t, (67)

fb = (34.5д2 − 59д + 24.5) (l · h) · 2−max(73.2д−21.2,8.9)
√
n·h, (68)

fr =
ρ

π
(fd + fb ), (69)

where д represents gloss, f0 represents the rough foundation when дloss = 0, f1 represents the smooth di�use
BRDF, fb is an extra retrore�ective bump at grazing angles, ρ is di�use albedo, and fr is the �nal Multisca�ering
Di�use BRDF approximation.

Figure 32: From le� to right: θh plots for gloss = 0
255 , 60

255 , 120
255 , 180

255 , 240
255 . Green is an approximation using BRDF slice, and red is our analytical

model.

Figure 33: �e le�-side of the rendered sphere is the full Multisca�ering Di�use BRDF, while the right-side is the hand-�t Multisca�ering
Di�use BRDF approximation. From le� to right: gloss = 0

255 , 60
255 , 120

255 , 180
255 , 240

255 .

Figure 33 shows a comparison of the full Multisca�ering Di�use BRDF with our hand-�t approximation, while
Figure 34 compares Lambertian Di�use with our hand-�t Multisca�ering Di�use BRDF approximation.

Figure 35 shows the di�erence between Lambert and Multisca�ering on skin. Since the underlying gloss value
is low, there is a general �a�ening of lighting across the face with Multisca�ering Di�use. While skin seems
like an unlikely candidate for this Multisca�ering Di�use model, it does appeal to our character artists, who
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Figure 34: Top row is Lambertian di�use, second row is our analytical �t to the BRDF slice approximation, and third row is ampli�ed
di�erence. From le� to right: gloss = 0

255 , 60
255 , 120

255 , 180
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255 .

were �rst to ask to use the model when it was still in its experimental stage. �is does seem to �x the unnatural
darkening of the face silhoue�e when using Lambert. We intend to validate this e�ect against photographs in
the future.

Figure 35: Example of new Multisca�ering Di�use BRDF on skin. Le� is Lambertian di�use, middle is Multisca�ering di�use, right is
ampli�ed di�erence. Notice Lambert di�use exhibits an unnatural darkening of the face along the silhoue�e, while Multisca�ering di�use
avoids this issue.
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5.9 Future Directions

�ere are several areas in our approximation that could be improved.

We assume 100% albedo on di�use re�ectance when simulating multisca�ering. If we were to add more degrees
of freedom to our approximation, we could model the saturation that the [Hei+16] model achieves with rough
surfaces.

We also assume 4% specular incident re�ectance (F0), a value that lies in the middle of the dielectric range. �is
too could be another degree of freedom to consider in order to follow the original model more closely.

We parameterize our interpolation variable t using gloss, but as we saw, errors were not evenly distributed across
the gloss range (Figure 32, дloss = 180

255 ). We could explore using α to calculate t instead.

We never performed real performance analysis of a full rational function solution against our hand-tuned ap-
proximation. Rational functions are composed of many multiplies and multiply-adds and a single divide, so can
be competitive compared to a moderate number of quarter-rate instructions.

6 LIGHTING STUDIES

Figure 36 shows the result of a lighting study rendered in-game, done to mimic the lighting of well-known
photographs, using our star character as the subject.

Figure 36: Lighting studies.
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7 CONCLUSION

When compared against the original photographs the lighting studies were based on, the images in Figure 36
show a level of photorealism that was not quite possible in our previous project.

Several techniques were outlined which contributed to this improvement in image quality. Our method for
Mipmapping Normal and Gloss (Section 2) ensured that surface bumpiness transitions into an appropriate look
of roughness in the distance. Our technique for Material Surface Occlusion (Section 4) was motivated by our
goal to render at “magic hour” when lighting is dominated by skylight, a lighting scenario that our rendering
traditionally had trouble with. �is resulted in richer shadow detail in all lighting conditions. Our Multisca�er-
ing Di�use BRDF (Section 5) was motivated by our observations and measurements of real-world lighting, and
importantly, ended up giving us be�er material di�erentiation through our gloss range.
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APPENDIX

1 float Fresnel_SchlickFrac( const float u )
2 {
3 const float oneMinusU = 1.0f - u;
4 const float oneMinusUSq = oneMinusU * oneMinusU;
5 return oneMinusUSq * oneMinusUSq * oneMinusU;
6 }
7
8 float Diffuse_Multiscattering_Primary( const float NdotL ,
9 const float NdotV ,

10 const float NdotH ,
11 const float LdotH ,
12 const float gloss )
13 {
14 float oneMinusLdotH = 1 - LdotH;
15 float oneMinusLdotH2 = oneMinusLdotH * oneMinusLdotH;
16 float oneMinusLdotH4 = oneMinusLdotH2 * oneMinusLdotH2;
17 float oneMinusLdotH5 = oneMinusLdotH4 * oneMinusLdotH;
18
19 float Fd0 = ( LdotH + oneMinusLdotH5 );
20 float Fd255 = lerp( 1, 0.25, Fresnel_SchlickFrac( NdotL ) ) * lerp( 1, 0.25,

Fresnel_SchlickFrac( NdotV ) );
21
22 float t = saturate( 2.2 * gloss - 0.5 );
23 float Fd = lerp( Fd0 , Fd255 , t );
24
25 // Extra retroreflective bump
26 float A = 34.5 * gloss * gloss - 59 * gloss + 24.5;
27 float B = max( 73.2 * gloss - 21.2, 8.9 );
28 Fd += A * exp2( -B * sqrt( NdotH ) ) * LdotH;
29
30 // Notice this does not include albedo/PI
31 return Fd;
32 }

Listing 1: Multisca�ering Di�use BRDF shader.

1 float CombineGloss( float a, float b )
2 {
3 // Fit for RNM , using our parameterization of gloss
4 float p = -0.535580 + ( 1.002204 * ( a + b ) ) +
5 ( -0.223910 * ( a * a + b * b ) ) + ( 13.323150 * a * b );
6 float q = 1.0 + ( 8.259559 * ( a + b ) ) +
7 ( 9.896132 * ( a * a + b * b ) ) + ( -22.015902 * a * b );
8 return saturate( p / q );
9 }

Listing 2: Gloss combining shader.
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1 float AdjustCosConeAngle( float cosConeAngle , float gloss , float NdotV )
2 {
3 // The cone is an especially poor approximation to actual visibility for high gloss values.
4 // This is an ad hoc adjustment.
5 // Gloss above 0.67 is unaffected by the cone , i.e.\ we set to full cone angle.
6 gloss = saturate( gloss * 1.5 ); // Optionally , omit this line.
7 float gloss2 = gloss * gloss;
8 float gloss4 = gloss2 * gloss2;
9 float gloss8 = gloss4 * gloss4;

10 float oneMinusNdotV2 = ( 1 - NdotV ) * ( 1 - NdotV );
11 float oneMinusNdotV4 = oneMinusNdotV2 * oneMinusNdotV2;
12 // We lerp towards full cone angle based on gloss and NdotV.
13 cosConeAngle = lerp( 0, cosConeAngle , ( 1 - gloss8 ) * ( 1 - oneMinusNdotV4 ) );
14 return cosConeAngle;
15 }

Listing 3: Specular occlusion cone adjustment.

1 float GetVisibilityFromMaterialOcclusion( float materialOcclusion ,
2 float gloss ,
3 float NdotV ,
4 const float3 worldNormal ,
5 const float3 lightDir )
6 {
7 float NdotL = dot( worldNormal.xyz , lightDir.xyz );
8 float vis = materialOcclusion;
9 float cosConeAngle = sqrt( 1 - vis );

10 float adjustedCosConeAngle = AdjustCosConeAngle( cosConeAngle , gloss , NdotV );
11 adjustedCosConeAngle = max( adjustedCosConeAngle , 0.001 );
12 vis = saturate( NdotL / adjustedCosConeAngle );
13 return vis * vis;
14 }

Listing 4: Light visibility from material surface occlusion.
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1 #define ENV_BRDF_SCALE 0
2 #define ENV_BRDF_OFFSET 1
3
4 float3 Fresnel_Indirect( const float NdotV ,
5 const float cosConeAngle ,
6 const float3 F0,
7 const float gloss )
8 {
9 float2 envBrdf;

10 const float ENV_BRDF_XY_RES = 32.0;
11 const float ENV_BRDF_Z_RES = 8.0;
12 const float tcXYScale = ( ( ENV_BRDF_XY_RES - 1.0 ) / ENV_BRDF_XY_RES );
13 const float tcXYOffset = rcp( 2.0 * ENV_BRDF_XY_RES );
14 const float tcZScale = ( ( ENV_BRDF_Z_RES - 1.0 ) / ENV_BRDF_Z_RES );
15 const float tcZOffset = rcp( 2.0 * ENV_BRDF_Z_RES );
16 float4 texcoord;
17
18 texcoord.xy = float3( NdotV , gloss , cosConeAngle ) * tcXYScale + tcXYOffset;
19 texcoord.z = cosConeAngle * tcZScale + tcZOffset;
20 texcoord.w = 0;
21 envBrdf = envBrdfConeLut.SampleLevel( linearClampSampler , texcoord.xyz , texcoord.w ).rg;
22 return F0 * envBrdf[ENV_BRDF_SCALE] + envBrdf[ENV_BRDF_OFFSET];
23 }
24
25 float3 Fresnel_Diffuse_Direct( const float NdotL ,
26 const float3 specColor ,
27 const float gloss )
28 {
29 float cosConeAngle = 0;
30 // BRDFs are reciprocal so we can pass in NdotL instead of NdotV and get
31 // the energy scattered due to specular reflection. To keep things simple ,
32 // we assume the point is fully visible (cosConeAngle = 0).
33 return 1 - Fresnel_Indirect( NdotL , cosConeAngle , specColor , gloss );
34 }

Listing 5: Energy conservation.
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1 float3 GGX_ImportanceSample( const float2 qr, const float alpha )
2 {
3 float alpha2 = alpha * alpha;
4 float phi = 2 * M_PI * qr.x;
5 float cosTheta = sqrt( ( 1 - qr.y ) / ( 1 + ( alpha2 - 1 ) * qr.y ) );
6 float sinTheta = sqrt( 1 - cosTheta * cosTheta );
7 float3 H;
8
9 H.x = sinTheta * cos( phi );

10 H.y = sinTheta * sin( phi );
11 H.z = cosTheta;
12
13 return H;
14 }
15
16 float GlossToAverageNormalLength( float gloss )
17 {
18 float alpha = GGX_AlphaFromGloss( gloss );
19 float3 averageNormal = float3( 0.0, 0.0, 0.0 );
20 for ( int sampleIndex = 0; sampleIndex < sampleCount; sampleIndex ++ )
21 {
22 // GetQuasiRandomFloat2( seed ) could be a Low -Discrepancy Sequence
23 // e.g. returns float2( HaltonSequence( seed , 2 ), HaltonSequence( seed , 3 );
24 float2 qr = GetQuasiRandomFloat2( sampleIndex );
25 float3 H = GGX_ImportanceSample( qr, alpha );
26 averageNormal += H;
27 }
28 averageNormal /= sampleCount;
29 return length( averageNormal );
30 }

Listing 6: Gloss to average normal length (GGX) using Macrosurface Area model by Importance Sampling.

1 float AlphaToMicroNormalLength(float alpha)
2 {
3 if (alpha == 0.0f) return 1.0f;
4 if (alpha == 1.0f) return 0.5f;
5
6 float a = sqrtf (1.0f - alpha*alpha);
7
8 return a / (a + (1 - a*a)*atanhf(a));
9 }

10
11 float AlphaToMacroNormalLength(float alpha)
12 {
13 if (alpha == 0.0f) return 1.0f;
14 if (alpha == 1.0f) return 2.0f / 3.0f;
15
16 float a = sqrtf (1.0f - alpha*alpha);
17
18 return (a - (1 - a*a)*atanhf(a)) / (a*a*a);
19 }

Listing 7: Closed-form solutions for alpha to average normal length (GGX).
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1 // Each entry is {gloss , normalLength }:
2 glossToNormalLength = {{0.000000 , 0.666670} , {0.003922 , 0.669966} , {0.007843 , 0.673329} ,
3 {0.011765 , 0.676758} , {0.015686 , 0.680251} , {0.019608 , 0.683807} , {0.023529 , 0.687424} ,
4 {0.027451 , 0.691099} , {0.031373 , 0.694832} , {0.035294 , 0.698620} , {0.039216 , 0.702459} ,
5 {0.043137 , 0.706349} , {0.047059 , 0.710286} , {0.050980 , 0.714267} , {0.054902 , 0.718291} ,
6 {0.058824 , 0.722353} , {0.062745 , 0.726451} , {0.066667 , 0.730582} , {0.070588 , 0.734743} ,
7 {0.074510 , 0.738930} , {0.078431 , 0.743141} , {0.082353 , 0.747373} , {0.086275 , 0.751621} ,
8 {0.090196 , 0.755882} , {0.094118 , 0.760155} , {0.098039 , 0.764434} , {0.101961 , 0.768717} ,
9 {0.105882 , 0.773001} , {0.109804 , 0.777282} , {0.113725 , 0.781557} , {0.117647 , 0.785823} ,

10 {0.121569 , 0.790078} , {0.125490 , 0.794317} , {0.129412 , 0.798539} , {0.133333 , 0.802739} ,
11 {0.137255 , 0.806916} , {0.141176 , 0.811067} , {0.145098 , 0.815189} , {0.149020 , 0.819279} ,
12 {0.152941 , 0.823336} , {0.156863 , 0.827357} , {0.160784 , 0.831339} , {0.164706 , 0.835281} ,
13 {0.168627 , 0.839181} , {0.172549 , 0.843036} , {0.176471 , 0.846846} , {0.180392 , 0.850607} ,
14 {0.184314 , 0.854320} , {0.188235 , 0.857982} , {0.192157 , 0.861592} , {0.196078 , 0.865149} ,
15 {0.200000 , 0.868652} , {0.203922 , 0.872099} , {0.207843 , 0.875491} , {0.211765 , 0.878826} ,
16 {0.215686 , 0.882103} , {0.219608 , 0.885321} , {0.223529 , 0.888482} , {0.227451 , 0.891583} ,
17 {0.231373 , 0.894625} , {0.235294 , 0.897607} , {0.239216 , 0.900530} , {0.243137 , 0.903393} ,
18 {0.247059 , 0.906196} , {0.250980 , 0.908939} , {0.254902 , 0.911623} , {0.258824 , 0.914248} ,
19 {0.262745 , 0.916814} , {0.266667 , 0.919321} , {0.270588 , 0.921770} , {0.274510 , 0.924161} ,
20 {0.278431 , 0.926494} , {0.282353 , 0.928771} , {0.286275 , 0.930992} , {0.290196 , 0.933157} ,
21 {0.294118 , 0.935267} , {0.298039 , 0.937324} , {0.301961 , 0.939326} , {0.305882 , 0.941276} ,
22 {0.309804 , 0.943175} , {0.313726 , 0.945022} , {0.317647 , 0.946818} , {0.321569 , 0.948566} ,
23 {0.325490 , 0.950265} , {0.329412 , 0.951916} , {0.333333 , 0.953520} , {0.337255 , 0.955079} ,
24 {0.341176 , 0.956592} , {0.345098 , 0.958061} , {0.349020 , 0.959487} , {0.352941 , 0.960871} ,
25 {0.356863 , 0.962214} , {0.360784 , 0.963516} , {0.364706 , 0.964779} , {0.368627 , 0.966002} ,
26 {0.372549 , 0.967189} , {0.376471 , 0.968338} , {0.380392 , 0.969452} , {0.384314 , 0.970530} ,
27 {0.388235 , 0.971574} , {0.392157 , 0.972585} , {0.396078 , 0.973564} , {0.400000 , 0.974511} ,
28 {0.403922 , 0.975427} , {0.407843 , 0.976313} , {0.411765 , 0.977171} , {0.415686 , 0.978000} ,
29 {0.419608 , 0.978801} , {0.423529 , 0.979576} , {0.427451 , 0.980324} , {0.431373 , 0.981047} ,
30 {0.435294 , 0.981746} , {0.439216 , 0.982421} , {0.443137 , 0.983073} , {0.447059 , 0.983703} ,
31 {0.450980 , 0.984311} , {0.454902 , 0.984897} , {0.458824 , 0.985464} , {0.462745 , 0.986010} ,
32 {0.466667 , 0.986537} , {0.470588 , 0.987046} , {0.474510 , 0.987537} , {0.478431 , 0.988010} ,
33 {0.482353 , 0.988466} , {0.486275 , 0.988906} , {0.490196 , 0.989330} , {0.494118 , 0.989739} ,
34 {0.498039 , 0.990133} , {0.501961 , 0.990513} , {0.505882 , 0.990879} , {0.509804 , 0.991232} ,
35 {0.513726 , 0.991571} , {0.517647 , 0.991898} , {0.521569 , 0.992213} , {0.525490 , 0.992517} ,
36 {0.529412 , 0.992809} , {0.533333 , 0.993090} , {0.537255 , 0.993361} , {0.541176 , 0.993622} ,
37 {0.545098 , 0.993873} , {0.549020 , 0.994114} , {0.552941 , 0.994346} , {0.556863 , 0.994570} ,
38 {0.560784 , 0.994785} , {0.564706 , 0.994992} , {0.568627 , 0.995191} , {0.572549 , 0.995382} ,
39 {0.576471 , 0.995567} , {0.580392 , 0.995744} , {0.584314 , 0.995914} , {0.588235 , 0.996078} ,
40 {0.592157 , 0.996235} , {0.596078 , 0.996386} , {0.600000 , 0.996531} , {0.603922 , 0.996671} ,
41 {0.607843 , 0.996806} , {0.611765 , 0.996935} , {0.615686 , 0.997059} , {0.619608 , 0.997178} ,
42 {0.623529 , 0.997292} , {0.627451 , 0.997402} , {0.631373 , 0.997508} , {0.635294 , 0.997609} ,
43 {0.639216 , 0.997707} , {0.643137 , 0.997801} , {0.647059 , 0.997890} , {0.650980 , 0.997977} ,
44 {0.654902 , 0.998060} , {0.658824 , 0.998139} , {0.662745 , 0.998216} , {0.666667 , 0.998289} ,
45 {0.670588 , 0.998360} , {0.674510 , 0.998427} , {0.678431 , 0.998492} , {0.682353 , 0.998554} ,
46 {0.686275 , 0.998614} , {0.690196 , 0.998671} , {0.694118 , 0.998726} , {0.698039 , 0.998779} ,
47 {0.701961 , 0.998830} , {0.705882 , 0.998879} , {0.709804 , 0.998925} , {0.713726 , 0.998970} ,
48 {0.717647 , 0.999013} , {0.721569 , 0.999054} , {0.725490 , 0.999094} , {0.729412 , 0.999132} ,
49 {0.733333 , 0.999168} , {0.737255 , 0.999203} , {0.741176 , 0.999236} , {0.745098 , 0.999268} ,
50 {0.749020 , 0.999299} , {0.752941 , 0.999328} , {0.756863 , 0.999357} , {0.760784 , 0.999384} ,
51 {0.764706 , 0.999410} , {0.768627 , 0.999435} , {0.772549 , 0.999459} , {0.776471 , 0.999481} ,
52 {0.780392 , 0.999503} , {0.784314 , 0.999524} , {0.788235 , 0.999545} , {0.792157 , 0.999564} ,
53 {0.796078 , 0.999582} , {0.800000 , 0.999600} , {0.803922 , 0.999617} , {0.807843 , 0.999633} ,
54 {0.811765 , 0.999649} , {0.815686 , 0.999664} , {0.819608 , 0.999678} , {0.823529 , 0.999692} ,
55 {0.827451 , 0.999705} , {0.831373 , 0.999718} , {0.835294 , 0.999730} , {0.839216 , 0.999741} ,
56 {0.843137 , 0.999753} , {0.847059 , 0.999763} , {0.850980 , 0.999773} , {0.854902 , 0.999783} ,
57 {0.858824 , 0.999792} , {0.862745 , 0.999801} , {0.866667 , 0.999810} , {0.870588 , 0.999818} ,
58 {0.874510 , 0.999826} , {0.878431 , 0.999833} , {0.882353 , 0.999841} , {0.886275 , 0.999848} ,
59 {0.890196 , 0.999854} , {0.894118 , 0.999860} , {0.898039 , 0.999866} , {0.901961 , 0.999872} ,
60 {0.905882 , 0.999878} , {0.909804 , 0.999883} , {0.913725 , 0.999888} , {0.917647 , 0.999893} ,
61 {0.921569 , 0.999898} , {0.925490 , 0.999902} , {0.929412 , 0.999906} , {0.933333 , 0.999911} ,
62 {0.937255 , 0.999914} , {0.941176 , 0.999918} , {0.945098 , 0.999922} , {0.949020 , 0.999925} ,
63 {0.952941 , 0.999929} , {0.956863 , 0.999932} , {0.960784 , 0.999935} , {0.964706 , 0.999938} ,
64 {0.968627 , 0.999940} , {0.972549 , 0.999943} , {0.976471 , 0.999945} , {0.980392 , 0.999948} ,
65 {0.984314 , 0.999950} , {0.988235 , 0.999952} , {0.992157 , 0.999954} , {0.996078 , 0.999956} ,
66 {1.000000 , 0.999958}};

Listing 8: Gloss to average normal length (GGX) table for our parameterization of gloss. We generated this table using importance
sampling of the macrosuface-area GGX NDF.
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