CSM Scrolling

An acceleration technique for the rendering of cascaded shadow maps

CSM Scrolling by: Mike Day

CSM Caching by: Al Hastings mday@insomniacgames.com

ath@insomniacgames.com

Who am I? Mike Acton

macton@insomniacgames.com

Quick Background

From light POV, imagine whole world as single mega shadow texture On any particular frame, a shadow map represents a 2D rectangular slice of that volume.

Cascade refers to multiple resolutions of that slice

Assumptions

Most of the time, the camera does not make radical changes across frames

Most geometry is relatively static across frames

Geometry which has changed from the previous frame can be identified

The light direction and shape is relatively stable across frames

Results of spatial queries can be used in the same frame as shadow rendering

Geometry is divided into small* instances

Concept

render A

Store "static" geometry from previous frame in cached map

 \bigcirc

render A

W

Scroll cached map to account for change in camera view

Render additional "static" geometry into edges exposed by scrolling

Render newly "static" geometry in cached area

render A

Copy map to use as final shadow map for current frame

temporary

scroll

W

Render non-static geometry into final shadow map for frame

CSM Caching

Assumption: Camera is not moving (much)

Store "static" geometry from previous frame in cached map

Store "static" geometry from previous frame in cached map

"static" = not moved for t time. (e.g. 5 seconds)

Each frame, render nonstatic geometry on to cached copy

Cache of previous frame shadow map

Cache of previous frame shadow map

Invalid if...

Cache of previous frame shadow map

Invalid if...

- Camera moves
- Camera FOV changes

Cache of previous frame shadow map

Invalid if...

- Camera moves
- Camera FOV changes
- "Static" geometry moves

Render newly "static" geometry in cached area

Query for state of "static" geometry

Diff current "static" versus previous "static" query results

Dynamic occlusion system used

Create copy new map cache to use this frame

"Dynamic" geometry rendered to temporary shadow map

CSM Scrolling

Assumption: Camera moves a lot (but slowly*)

Insert in to CSM Caching:1. Scroll map2. Render into exposed edges

 \bigcirc

render A

W

Scroll cached map to account for change in camera view

temporary

W

Sample shadow texels from previous frame

Scrolled area is clamp-to-border (color=1.0)

Observe: Camera motion is 3D

Observe: Camera motion is 3D

- Lateral scrolling
 Double conclusion
- Depth scrolling

Lateral scrolling Translation perpendicular to light rays

1	float ScrolledDepth_LateralOnly(inpu	Jt
2	{	
3	float2 uv = input.xy;	
4	return SampleShadowMap(uv);	
5	}	

UV translated by delta camera in light frame

Lateral scrolling Translation perpendicular to light rays

Simple texture lookup (Point sampling)

```
1 float ScrolledDepth( input )
2 {
3 float2 uv = input.xy;
4 float depth_offset = input.z;
5 float old_depth = SampleShadowMap(uv);
6 return old_depth + depth_offset;
7 }
```

Additional handling needed for depth scroll

```
1 float ScrolledDepth( input )
2 {
3 float2 uv = input.xy;
4 float depth_offset = input.z;
5 float old_depth = SampleSnadowMap(uv);
6 return old_depth + depth_offset;
7 }
```

Delta camera depth in light frame

```
1 float ScrolledDepth( input )
2 {
3 float2 uv = input.xy;
4 float depth_offset = input.z;
5 float old depth = SampleShadowMap(uv);
6 return old_depth + depth_offset;
7 }
```

Offset all previous depths (scroll depth)

Gotchas:

- Near plane
- Far plane

Gotchas:

• Near plane

Clamp to 0.0

• Far plane

Gotchas:

- Near plane
- Far plane
 Problem 1.0 = buffer clear

Gotchas:

- Near plane
- Far plane

Problem 1.0 = buffer clear

1 = float ScrolledDepth(input)
2 {
3 float2 uv = input.xy;
4 float depth_offset = input.z;
5 float old_depth = SampleShadowMap(uv);
6 float new_depth = old_depth + depth_offset;
7 return (old_depth < 1.0) ? new_depth : 1.0;
8 }</pre>

Render additional "static" geometry into edges exposed by scrolling

render A

Scrolled in area divided into slabs (thin OBBs)

render A

'Static' geom with overlapping bounding volume rendered

temporary

Observe: Coarseness of geometry relative to view

Render newly "static" geometry in cached area

render A

Copy map to use as final shadow map for current frame

CSM Scrolling

Each map (512x512) PS3/360

Another view...

Wrap up

Straightforward addition to CSM Caching

Key: Like 2D bitmap scrolling

Do not render ~70% of 'static' geometry in to CSM

Detailed paper: bit.ly/QloBr9

