
1

Video Introduction

2

In this talk we’ll be presenting features that were implemented by the technical
artists at Naughty Dog. This is our first game using a Physically-Based Renderer. We
found that following a physically-based rendering philosophy actually made our jobs
easier, made cleaner code, and made the artist interface much more intuitive. So
we’ll look at some features that were built using that philosophy!

3

We’re going to cover a lot of individual topics here. First Waylon will talk about some
rendering features covering everything from post processing, to atmosphere, to pixel
shaders…

4

Then Andrew will talk about simulating washing machines. 45 minutes of washing
machine goodness and all the vertex processing tech leading up to it.

5

First, a few key things to know about our renderer. Note, we don’t do any node-
graph-based editing for our environment shaders – when you get this complicated,
it’s much easier to manage in traditional code!

6

Let’s start the talk with a new twist on some old features.

7

First, here’s a screenshot with the HDR LUT turned off. There’s no artistic color
grading and no tonemapping.

8

Here we turn on tonemapping. Note it adds a little contrast in the shadows, but
importantly, it prevents the yellow/pink color banding when the clouds get
overexposed.

9

And here we turn on the Color LUT. You can see we’re artistically applying a cool tint.
This is the final shot form the game, but so far, nothing we couldn’t do before.

10

First question – why do we want to color grade in HDR? It allows us to treat the color
grading more like a filter on the lens, rather than a post process effect. Let’s do an
extreme example. Here’s a shot from the final game.

11

Same shot, but with a strong cyan tint in “multiply” mode. Note that it completely
saturates the whites in the clouds.

12

…Versus in HDR space, even with the cyan multiply, some of the white from the
clouds still shows through. Yes, this can be achieved in LDR with masking or
advanced blend modes, but in HDR it happens automatically.

13

On previous projects we had the tonemapping function implemented by John Hable.
But really, these input numbers were just controlling a parameteric curve that maps
HDR values into an LDR space. We can get the same mapping with a curve editor in
familiar graphics software. We COULD store this mapping in a grayscale LUT texture…

14

We decided to encode BOTH our artistic color grading AND our tonemapping curve
into a single HDR LUT texture. Our LUT represents an input range of 0.0-2.0 sRGB
instead of the traditional 0.0-1.0, with an output range of 0.0-1.0 sRGB. Note, we
originally experimented with larger input ranges, up to 4.0 sRGB. There were no
technical issues (no noticeable lack of precision), but for the painterly look of
Uncharted 4, the extra range wasn’t necessary.

15

We decided to use a compositing program called Fusion for our HDR color grading
and tonemapping curve editing. (You could also use something like Nuke or DaVinci.)
Fusion works in HDR by default, and the node-based workflow is great for color
grading – but the color correction tools themselves are extremely powerful and
intuitive compared to what comes with Photoshop.

So what we have here is the flow of color operations. On the bottom-left are a few
user-specified color correction nodes, which can get as complicated as the artist likes.
To their right we provide a few presets for tonemapping curves, which the artist can
choose from and modify as needed.

16

One other benefit of this workflow – as the artist tweaks the LUT in Fusion, it live-
updates in-game. Fusion has some basic scripting ability. After every edit, we save
the cropped LUT to disk, and send a message to the game to refresh. In practice this
refresh happens at about 5fps, which is plenty fast for live editing.

One other major benefit of this workflow – the artist can freely look around the
scene as they’re tweaking colors to make sure it looks good everywhere – they’re not
locked into their initial screenshot.

17

18

Next let’s talk about fog. Our artists wanted very specific control of the fog color in
different directions. Especially, they wanted the color of the fog to match the color of
the skydome at the horizon. As a quick illustration, this is an image of our final result
in-game….

19

.. And here’s just a standard monochromatic fog.

20

So we let our artists paint a texture that controls the color of the fog. Here’s a sky
texture and its associated fog texture. You can see the color and energy for the upper
hemisphere is the same, and the artist manually extended the fog image below the
horizon for the lower hemisphere.

21

Here’s that fog texture, in action. The problem though, is that objects in the
foreground receive the exact same fog color as what’s behind them. (The problem is
even worse in an interior, or behind a wall!)

22

So we use the low mips (full-res) at the horizon, and the high mips (low-res) close to
the camera. In this image, Drake is just pulling from a 1x1 version of the fog texture…
which means he’s getting the average color of the entire image. And when you think
about it, the color of the fog for a given pixel is the accumulation of all the light that
strikes the particles in between the camera and the destination surface. (plus or
minus a few scattering and absorption coefficients.)

23

Here’s that fog texture again, with its mips, to illustrate the point. They get blurrier
and blurrier, until it’s just a single pixel with a solid color.

24

Ultimately, the mip fog rendering is fairly plausible, since it captures the color of the
lighting affecting different parts of the scene.

25

To sample the fog texture, we do an approximate translation of the camera vector to
the sky’s UV space, which we use to look up into the mip fog texture. The fog density
is calculated separately, based on typical artist controls like height falloff, distance
falloff, etc.

26

We have a lot of systems in place to build our atmosphere - sun volumetrics, runtime
light volumetrics, a special fog term to blend the horizon, an artistic distance-based
contrast control, a fog near-color override, and of course particles! But the mip fog is
the place where our artists start.

27

28

First, as a review let’s talk about data: geometry, texture, and subpixel. Something
like Albedo/Color or Specular IOR is pretty scale-agnostic. When we go from high-
poly geo to low-poly, we typically capture the difference in a Normal map and
Ambient Occlusion map.

29

When we have geometry or texture data that becomes subpixel, that’s essentially our
BRDF, captured in parameters like Roughness or Anisotropic.

30

At each reduction step we lose data, and the error in the amount of energy increases.
By providing new types of input data and spending some ALU, we can improve on
each of these phenomena. For example, by supplying a heightmap, we can perform
parallax occlusion and parallax shadowing at the texture level. The point is, it’s useful
to examine these phenomena independently, because there may be ways to bring
them back.

31

When we transitioned to Physically-Based Rendering, artists struggled with Ambient
Occlusion, wanting to paint it into the base color, or wanting the AO to affect all light
sources. Eventually we realized there’s a physically-plausible way to do this. We call
it “Micro Shadowing”. Here’s an example of a scene with the feature in place…

32

… And without. Note how it mostly appears at the light terminator, and fills in some
of the cracks where the geometry represented by the normals doesn’t cast a shadow,
or where the sun shadow isn’t precise enough.

33

And here’s our sunlight isolated, with Micro Shadow on…

34

And micro shadow off

35

Here we have a cross-section of a surface.
Ambient Occlusion approximates the cone angle visible from a point.
We can define θ2 as half of the cone angle.
If we have an incoming light ray, we can define the angle between the light ray and
surface normal θ. If θ < θ2, the pixel receives light. If θ > θ2, the pixel is in shadow.

36

And this is where “tech” meets “art”. Our AO maps aren’t authored precisely or
consistently. AO and a Normal aren’t enough data to represent the shadowing
accurately anyway. So that’s already introducing quite a bit of error to the system. I’ll
revisit this on the next project, try to get more correct without significantly
introducing cost, but this was good enough to ship Uncharted 4.

One other note - since we’re representing micro features here, we don’t want a hard
shadow, we want a soft gradient, since we’re representing what percentage of each
pixel is in shadow, not a hard cast shadow.

37

One other closely-related feature is “Ambient Occlusion Occlusion”, or “AO Fresnel”.
The concept is, ambient occlusion represents shadowing in the cracks – in this case,
cracks that don’t exist in the low-poly model, but that have been baked down to
normals. The thing is, when the object is viewed from a glancing angle, those cracks
SHOULD be occluded by the geometry. Since the geometry doesn’t exist, we need to
occlude the cracks in the shader.

38

… Which looks like this.

39

The code is dead simple. Probably we can find something that represents the
curvature more correctly. Note we use the geometry normal, not the normal-map-
normal, for the dot product.

Also note – this is only applied to surfaces with baked lighting. For objects with probe
lighting (like characters), the AO map DOES include occlusion information from the in-
game geometry, so we don’t apply the viewing-angle fade there.

40

This is used throughout the whole game, by default, on every environmental surface.
There are no artist controls to tune, it’s just always applied.

41

Let’s go a little deeper into shading, and look at some specific material types.

42

Uncharted 4 features a lot of mossy surfaces (and more generally, a lot of “fuzzy”
surfaces.)

43

Moss doesn’t follow a standard microfacet brdf model. It’s a lot more porous, with a
massive amount of self-shadowing, ambient occlusion, and transmitted light. The
moss itself tends to have a lighter color at the tips than deeper towards the base.
And there’s a strong viewing-angle dependency – when viewed straight on, you can
see down into the shadows between the fibers, and while viewed from an angle, only
the tips are visible.

44

Here’s a simplified example of the problem – imagine this is a close-up shot of a 1cm
sphere You can see how all of the subtle properties of the fuzzy surface start to come
through. And when we zoom out so the details are subpixel, the resulting brdf looks
very different than a microfacet model. We need to solve both of these cases for our
moss shader in-game – moss details are large enough to be seen in the texture when
the camera is close, but become subpixel when more than a few meters away.

45

Here’s a typical moss shader from Uncharted 4, with all the bells and whistles
applied.

46

Compared to a standard microfacet model with the same texture inputs, which looks
like hard plastic by comparison.

47

Here are the four main contributing textures – Color, Normal, Heightmap, and
Ambient Occlusion. Note how dark the AO map appears – we’ll get back to that in a
minute.

48

Let’s build up the shader one feature at a time. Here’s our base microfacet BRDF.

49

We add in Sheen… it helps a little, but not nearly enough.

50

We add a Light Wrap feature. This modifies the basic NdotL of the light, letting it
travel further around the mesh. This simulates both Subsurface Scattering, and also
the phenomenon where fuzzy fibers beyond the usual 90-degree light terminator may
not be in shadow. Our light wrap ignores the normal map, so it fills in the cracks
more nicely. And the artist can also supply a tint for the wrapped light (in this case,
green!) This is inspired by Eric Penner’s Pre-Integrated Subsurface Scattering. For a
good monochromatic solution, refer to Steve McAuley’s Extension to Energy-
Conserving Wrapped Diffuse

51

We have a Fuzz BRDF feature, which is the subpixel, “microfiber” version of this
whole phenomenon. The artist has the ability to specify a separate color for the fuzz
and we render it as a microfiber layer on top of a microfacet layer.

52

For some cases where we can afford it, we apply parallax shadows. (Thanks Natalya!)

53

We apply AO. For moss, the AO goes very dark. Two features we discussed earlier
are very critical here – the AO fades to white at a glancing angle, and our Sun Micro
Shadowing is applied.

54

Finally, we add back a bit of color where the ambient occlusion gets dark. This
simulates the effects of bounce light and subsurface scattering. Our code was a
simple hack, but refer to the talk by Jorge Jimenez for a really good physically-based
solution to this problem.

55

And here’s the microfacet BRDF again for comparison.

56

Here’s our light wrap code. It’s somewhat energy conserving, in that it broadens the
terminator without just adding energy. Also note, the only artist control is a color –
as the color approaches 0, the whole system converges to NdotL.

I won’t show the fuzz code, because it got kind of hacky. Pick your favorite
microfiber/fabric brdf and give it some user-friendly controls. Easy!

57

Many surfaces in the world exhibit this “fuzzy” mossy behavior. From fabric to distant
foliage, we see similar behavior. Even subtle phenomena like dust or peach fuzz have
these same fuzzy characteristics. I want to try encapsulating all of the above
techniques into a standardized interface of our artists, make them into a single brdf
feature.

58

59

For Uncharted 4, we wanted a unified wetness function. Here’s an example of a
shipped scene. We’re not the first ones to tackle this problem, but I’m happy with
our solution, so I thought I’d share.

60

… And the same scene with wetness turned off.

61

And here’s a visualization of the wetness mask the artists painted. Note – for some
scenes we wanted the ability to drive wetness dynamically via gameplay. (like when a
rain storm starts.) But for most of the game we just wanted visual consistency,
physical correctness, and an intuitive interface for the artists.

62

Here are a few more examples. Note how the puddles show four characteristic
regions. A) Core of the puddle, the water surface is totally flat. B) Region where
surface tension causes water to cling to the surface underneath, causing a shrink-
wrapped look. C) Region where water has saturated the surface, causing a darkening
of the albedo, but not significantly affecting normals or specular response. D) Dry,
unmodified surface.

63

And here’s the code. The artists have control of two parameters, “Wetness” and
“Porosity”, which can be blended independently. Wetness drives the transition
between the different phases explained on the previous slide. Porosity is an optional
control (if it’s omitted, Roughness is used instead). Porosity affects darkening of the
base color – surfaces that are more porous darken more, surfaces that are less
porous, more “hard”, darken less. Note that we just lerp to a “squared” version of the
base color – compared to real-world reference, this is a reasonable approximation of
the darkening that happens when a surface gets wet.

64

Here it is in action – you can see, for any input values of the mask, it gives meaningful
wetness results, so it’s very intuitive to use. Note, when wetness strength gets above
a value of 98%, we force the vertex normal to point straight up, which does a very
convincing job of making the surface of the pool feel flat even if the underlying
geometry isn’t flat.

65

Our artists used this feature in nearly every scene. When reinforced by lighting and
fx, it really helps sell the look.

66

67

We had a variety of glass surfaces on Uncharted 4. We were able to achieve all of
them with a fairly minimal set of tools.

68

Our simplest case of glass is windows. Technically there should be a refractive
component, but it’s cheaper (and less artifact-prone) to just do alpha blend.

69

When you think of glass as “transparent”, it’s really the diffuse component that’s
transparent – the specular component is identical to any other hard surface. So if
you’re doing standard alpha blending you can pre-divide out the alpha channel, and
end up with a result where only the diffuse is affected by the transparency. The
surface can have varying transparency (say, if the window is grimy), and the specular
result should appear constant across the surface. The only issue is floating point
inaccuracy as transparency approaches 0.

Note, if you perform premultiplied alpha, this problem becomes much simpler – only
apply the transparency to the diffuse, not to the specular!

70

For solid glass (or ice) surfaces, we incorporate refraction. This follows the same rule
as before, where only the diffuse component becomes transparent and the specular
is preserved. But this time we blend against the screen buffer in the shader – we use
the transparency map to lerp our diffuse component against the pixels refracted from
behind the object.

For more information on this subject, refer to Morgan McGuire’s talk.

71

We can use Snell’s Law to calculate how the view vector is bent when it transitions
from air into a refractive surface. (using the intrinsic function “refract()”).

72

But the adjusted ray isn’t enough. At some point the ray will exit the material. In the
example above, the ray has been offset by a distance d. We can use that as an offset
into the Screen UV coordinates. Note that d increases as v becomes perpendicular to
the surface, and as the thickness of the surface increases.

73

Like any good physics problem, we can simplify things by treating the surface as a
perfect sphere. We have two major classes of refractive surfaces – “thin shell”, which
represents a hollow sphere like a Christmas ornament, or “solid”, like a crystal ball.

74

Here’s an example - observe that we used “thin shell” refraction for the empty part of
the tumbler, and “solid” refraction for the base.

75

We also have parameters for the medium to have a tint, like for colored glass, and for
the surface diffuse to be opaque, which is useful for labels or grime.

76

The user interface is comparatively simple. Here are all the controls we’ve
discussed…

77

And here’s the code that’s driven by those parameters. Note our approximation: for
solid objects the ray travels a uniform distance, for thin-shell objects the distance
increases bases on glancing angle.

78

This ice sculpture is a good example of all these parameters in action. It’s treated as a
“solid” material type. It has a slight blue tint, and varying thickness (the body is much
thicker than the arm, for example.) And the artist used the Surface Transparency
control to blend in some frost, applying it with a Fresnel falloff, only to the upward-
facing surfaces.

79

We only support one layer of refraction that reads from the screen buffer. For the
wine inside of these glasses, instead of fetching a pixel from the screen buffer, we
keep the refraction vector in world space, and fetch the refraction color from the
nearest cubemap (the same one that supplies the specular reflections.) The artistic
controls for this type of refraction are the same.

80

In the end, the results were good enough, but can always be better. The main issues
we encountered were sort-order artifacts, and transparent objects receiving the
correct cubemap from the environment. (Particularly an issue when a glass window
can be seen from inside and out.) For the refraction tech we want to try simulating
frosted glass by multi-sampling the screen buffer, possibly with temporal jitter. But
having a physically-plausible basis is a good base to build on.

81

82

Please follow this link to find the video:
https://www.youtube.com/watch?v=LjCjXFmkX-4

83

There are a lot of vertex processing problems to be solved in a game production. On
Uncharted 4 we were able to take this approach much further then we initially
anticipated and did our best to keep it very generalized and accessible.

84

But first things first - the original problem we were trying to solve was foliage
animation. We had a ton of it and needed a simple and cheap way to get everything
on screen moving.

85

We wanted a more physically accurate implementation so we went for pivot-based
rotation. Pivot positions were stored in vertex colors.

86

This solidified the mental shift we had for treating vertex attributes as just general
purpose data.

87

Maya does not have a very robust vertex color scripting pipeline so for most
operations we had to write our own functionality using Maya API. Nevertheless you
can use this snippet to get going with baking pivots in maya.

88

Eventually we came up with simplified ways to author pivot data. Like using a UV-
shell based approach.

89

The data is not very visual so it can get confusing for artists. Consider debug tools
that allow them to check their pivot data in their authoring tool. We had full
animation preview in Maya but had to sacrifice that in Viewport 2.0.

90

The order of operations for vertex shader rotations effectively allowed us to do
hierarchical animation without having to store any hierarchical data. Just pivots. We
also found it necessary for very high-frequency wind motion to have a classic vertex
normal based animation on tips of leaves and fronds.

91

Minimal amount of parameters is imperative for any efficient system. 2 main
parameters we used were “Bend Intensity” – Max Rotation Angle and “Bend Speed” –
which was the Speed of Animation. Sub-object Bend parameters are inputs for our
time offset calculation explained on page 93-94. Variation was a per sub-object
randomization multiplyer.

92

While physically-based, getting the angle function required some iteration and magic
art numbers to get a satisfactory animation with minimal amount of instructions.

93

“timeOffset” variable from the previous slide allows us to have some vertices
animating further in time. If we modulate that by distance to pivot we get a nice
swaying motion that is Crucial for achieving an organic look.

94

Pivot based rotation allows for exceptionally easy vertex normal updating (use the
same axis and angle as for vertex rotation, but origin([0,0,0]) for the pivot). It was
optional in our first implementation but we are definitely going to hard code it “On”
going forward.

95

All of the parameters up to this point were on a per-asset level. We had a set of
similar level-wide parameters that would control the wind globally. All of our foliage
was setup in a neutral wind environment with the entire foliage library side by side
for reference. That way we made sure we are getting consistent wind motion across
the board.
Apart from our wind parameters we had our global 2d Wind Gust function which was
in essence a wave-pattern texture projected top-down into the world. It was sampled
in every wind type creating consistent motion across varied surfaces and objects.

96

First pass player interaction was created by rotating a sub-object away from a
character based on proximity.

97

But we didn’t have to do just rotation. Pushing objects away based on pivot distance
was a viable option and helped us get interactivity fast and cheap where we wouldn’t
have been able to otherwise.

98

Notable, most of these interactions are also possible in the Pixel Shader. This is an
example of UV based wind and player interaction.

99

To extend the functionality and allow for persistence of data we implemented a
Particle Influence render target that stored direction and intensity of rotation and
could be written into with particles. That allowed us to have an unlimited amount of
character and vehicle interactions for the constant cost of sampling this 2d buffer for
every vertex. It was a good tradeoff.

100

Having vehicle press down foliage was an important problem to solve since we have a
lot of vehicular gameplay.

101

Adding a generic communication pipeline between FX and Shaders allowed us other
fun uses, like characters masking certain material layers from the objects underneath.

102

Porting the same logic to skinned meshes wasn’t quite trivial though

103

As a solution, for every hair card we chose one pivot vertex and made it’s post-
skinning position available in the shader for every vertex in the common shell.

104

Here’s an example of the per hair card movement.

105

But we also wanted directional data. For example to limit hair wind to just the side of
the head that is directly facing wind direction. But there was no proper generalized
direction data, as vertex normals in this situation are all over the place.

106

Our solution was an additional vertex color set that would store generalized
directional information and would be pushed through the normal skinning compute.
Basically a generic extra normal set.

107

Another use of that directional data was the procedural hair gravity feature we used
to simulate Drake’s wet hair. It relied on the same inputs as the wind which made it
quite painless to implement.

108

As you can see we didn’t actually rotate the hair cards but rather pushed the verts
that are furthest from the pivot down in world-space. It was a simpler solution and
the stretching wasn’t noticeable.

109

Another use-case of the directional info was the shader cloth wind.

110

Using the skinned extra normal set and Wind direction we could derive a mask for the
part of the shirt that would have cloth wind ripples. Then we projected our 2d wave
function from both X and Z axes and animated it scrolling down in the vertex shader.
That gave us the silhouette change but normal update was a very big part of the
effect. So we just added a normal map of the same wave pattern and blended that in
the pixel shader.

111

An additional feature of our wind system is blending in a vertex color morph target
based on global wind gust.

112

That way we combine procedural pivot and normal based wind simulation with 2
discrete “keyframes” for extreme intensities.

113

Another feature to come out of this was StepMorph™. We would blend to a morph
target based on player distance to sub-object pivot to create more response to the
player in the world.

114

As you can see the code is extremely simple. Particle World Influence render target
was a way to provide persistence to this technology as well.

115

As you’ve noticed by now all the features described in this presentation take already
existing technology and add just enough on top to ungate new and exciting
opportunities. For this particular case we needed a good vehicle damage model that
was fast and quick to implement. So we decided to take our skinned vertex color
channel and use it as a morph target. Since our Skinning Compute would normalize
normal data we had to store the magnitude of the transformation as a float attribute
in a separate vertex color channel.

116

Then all we had to do was to have our vehicle damage particles write into our Particle
Influence render target and read that in the shader to reveal the damaged morph
target.

117

Another big optimization for us was Pivot Billboarding/Imposters. Since we could get
cards to rotate around a baked pivot instead of object pivot, we could attach them all
together saving hundreds of drawcall submissions for all of our mid and wide camera-
facing cards.

118

Another thing we did was a generalized ambient animation pipeline. Our artists had
access to looping motion, rotation and scale animations that could be combined in all
kinds of ways.

119

For example this washing machine animation is a small segment rotation around
object pivot + subtle motion back and forth across the floor.

120

The bobbing boats effect was created using up-down movement with some left-right
rotation.

121

Geometry rain ripples were using our ambient scale to appear and disappear. We had
to write a raycast solution to auto populate them. We stored their positions as a
collection matrixes in a binary so that we could load and control their density at
runtime.

122

We even had a prototype of vertex shader swarm simulation. Each of the flies is a
camera facing card but all of them together are just one object. They orient
themselves according to their velocity and as you can see in the video are pretty
controllable.

123

Next fun thing we did in vertex shader was keyframe animation. This tech was
spearheaded by our great FX artists Raymond Popka and Lauren Simpson.

124

We used it for particle crowds and distant particle animals. This tech also allows us to
update normals while storing them in a separate keyframe pixel row.

125

Definitely use the Load function to sample your texture to avoid filtering or sampling
messing up your animation.

126

This tech paid off bigtime in this particular implementation. For each particle flipbook
we create a keyframe texture that has local space bounds of the visible pixels in each
frame. That allows us to modify FX quads in vertex shader to occupy only the space
currently needed by the flipbook frame. Thus dramatically reducing fx overdraw and
pixel shader pressure. As an additional pass we added UV positions to the keyframe
texture and were able to repack our flipbooks to half the size with minimal to no
resolution loss. The entire thing took just a couple of days to implement.

127

We also experimented with vertex shader based population of assets. Which wasn’t
really population. We had a single mesh that we would wrap around the player
position on a sub-object level based on his distance from WS sub object pivot.

128

Great effect for a magic druid game!

129

Not as expensive as we thought. Still could be made cheaper by moving to compute.

130

131

132

Hopefully you found it useful seeing these examples of our work. Looking back, there
were a few common philosophies that made our work successful. By following these
in all of our work, the technical artists at Naughty Dog were able to contribute a
significant number of features that were key to the look of Uncharted 4.

* Recreate physical phenomena, don’t just layer hacks: Try to base things on physical
phenomena as much as possible. For wind, it has been common to layer sin
functions of different phases, but doing joint rotation looks much better, and is easier
for artists to understand!
* Create as few parameters as possible: It’s often better to have a small set of
controls that cover 80% of use cases, than to have a slider for every single variable.
* Be responsible for framerate: At the end of the day, the game has to be in frame. If
you write inefficient code, then somewhere down the line, art will have to be cut.
* When you don’t know, ask!: Andrew and I couldn’t have created all of this tech if
we weren’t constantly asking programmers for help; how to do a proper matrix
transform, how to optimize, even how to properly name our variables.

133

134

135

136

137

