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Video Introduction 
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In this talk we’ll be presenting features that were implemented by the technical 
artists at Naughty Dog.  This is our first game using a Physically-Based Renderer.  We 
found that following a physically-based rendering philosophy actually made our jobs 
easier, made cleaner code, and made the artist interface much more intuitive.  So 
we’ll look at some features that were built using that philosophy! 
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We’re going to cover a lot of individual topics here.  First Waylon will talk about some 
rendering features covering everything from post processing, to atmosphere, to pixel 
shaders… 
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Then Andrew will talk about simulating washing machines. 45 minutes of washing 
machine goodness and all the vertex processing tech leading up to it.  
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First, a few key things to know about our renderer.  Note, we don’t do any node-
graph-based editing for our environment shaders – when you get this complicated, 
it’s much easier to manage in traditional code! 
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Let’s start the talk with a new twist on some old features.   
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First, here’s a screenshot with the HDR LUT turned off.  There’s no artistic color 
grading and no tonemapping. 
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Here we turn on tonemapping.  Note it adds a little contrast in the shadows, but 
importantly, it prevents the yellow/pink color banding when the clouds get 
overexposed. 
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And here we turn on the Color LUT.  You can see we’re artistically applying a cool tint.  
This is the final shot form the game, but so far, nothing we couldn’t do before. 
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First question – why do we want to color grade in HDR?  It allows us to treat the color 
grading more like a filter on the lens, rather than a post process effect.  Let’s do an 
extreme example.  Here’s a shot from the final game. 
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Same shot, but with a strong cyan tint in “multiply” mode.  Note that it completely 
saturates the whites in the clouds.   
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…Versus in HDR space, even with the cyan multiply, some of the white from the 
clouds still shows through.  Yes, this can be achieved in LDR with masking or 
advanced blend modes, but in HDR it happens automatically. 
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On previous projects we had the tonemapping function implemented by John Hable.  
But really, these input numbers were just controlling a parameteric curve that maps 
HDR values into an LDR space.  We can get the same mapping with a curve editor in 
familiar graphics software.  We COULD store this mapping in a grayscale LUT texture…  
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We decided to encode BOTH our artistic color grading AND our tonemapping curve 
into a single HDR LUT texture.  Our LUT represents an input range of 0.0-2.0 sRGB 
instead of the traditional 0.0-1.0, with an output range of 0.0-1.0 sRGB.  Note, we 
originally experimented with larger input ranges, up to 4.0 sRGB.  There were no 
technical issues (no noticeable lack of precision), but for the painterly look of 
Uncharted 4, the extra range wasn’t necessary.   
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We decided to use a compositing program called Fusion for our HDR color grading 
and tonemapping curve editing.  (You could also use something like Nuke or DaVinci.)  
Fusion works in HDR by default, and the node-based workflow is great for color 
grading – but the color correction tools themselves are extremely powerful and 
intuitive compared to what comes with Photoshop. 
 
So what we have here is the flow of color operations.  On the bottom-left are a few 
user-specified color correction nodes, which can get as complicated as the artist likes.  
To their right we provide a few presets for tonemapping curves, which the artist can 
choose from and modify as needed.   
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One other benefit of this workflow – as the artist tweaks the LUT in Fusion, it live-
updates in-game.  Fusion has some basic scripting ability.  After every edit, we save 
the cropped LUT to disk, and send a message to the game to refresh.  In practice this 
refresh happens at about 5fps, which is plenty fast for live editing. 
 
One other major benefit of this workflow – the artist can freely look around the 
scene as they’re tweaking colors to make sure it looks good everywhere – they’re not 
locked into their initial screenshot. 
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Next let’s talk about fog.  Our artists wanted very specific control of the fog color in 
different directions.  Especially, they wanted the color of the fog to match the color of 
the skydome at the horizon.  As a quick illustration, this is an image of our final result 
in-game…. 
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.. And here’s just a standard monochromatic fog.   
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So we let our artists paint a texture that controls the color of the fog.  Here’s a sky 
texture and its associated fog texture.  You can see the color and energy for the upper 
hemisphere is the same, and the artist manually extended the fog image below the 
horizon for the lower hemisphere.   
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Here’s that fog texture, in action.  The problem though, is that objects in the 
foreground receive the exact same fog color as what’s behind them.  (The problem is 
even worse in an interior, or behind a wall!) 
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So we use the low mips (full-res) at the horizon, and the high mips (low-res) close to 
the camera.  In this image, Drake is just pulling from a 1x1 version of the fog texture… 
which means he’s getting the average color of the entire image.  And when you think 
about it, the color of the fog for a given pixel is the accumulation of all the light that 
strikes the particles in between the camera and the destination surface.  (plus or 
minus a few scattering and absorption coefficients.) 
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Here’s that fog texture again, with its mips, to illustrate the point.  They get blurrier 
and blurrier, until it’s just a single pixel with a solid color. 
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Ultimately, the mip fog rendering is fairly plausible, since it captures the color of the 
lighting affecting different parts of the scene.  
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To sample the fog texture, we do an approximate translation of the camera vector to 
the sky’s UV space, which we use to look up into the mip fog texture.  The fog density 
is calculated separately, based on typical artist controls like height falloff, distance 
falloff, etc.   
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We have a lot of systems in place to build our atmosphere - sun volumetrics, runtime 
light volumetrics, a special fog term to blend the horizon, an artistic distance-based 
contrast control, a fog near-color override, and of course particles!  But the mip fog is 
the place where our artists start. 
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First, as a review let’s talk about data: geometry, texture, and subpixel.  Something 
like Albedo/Color or Specular IOR is pretty scale-agnostic.  When we go from high-
poly geo to low-poly, we typically capture the difference in a Normal map and 
Ambient Occlusion map.   
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When we have geometry or texture data that becomes subpixel, that’s essentially our 
BRDF, captured in parameters like Roughness or Anisotropic. 
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At each reduction step we lose data, and the error in the amount of energy increases.  
By providing new types of input data and spending some ALU, we can improve on 
each of these phenomena.  For example, by supplying a heightmap, we can perform 
parallax occlusion and parallax shadowing at the texture level. The point is, it’s useful 
to examine these phenomena independently, because there may be ways to bring 
them back. 
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When we transitioned to Physically-Based Rendering, artists struggled with Ambient 
Occlusion, wanting to paint it into the base color, or wanting the AO to affect all light 
sources.  Eventually we realized there’s a physically-plausible way to do this.  We call 
it “Micro Shadowing”.  Here’s an example of a scene with the feature in place… 
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… And without.  Note how it mostly appears at the light terminator, and fills in some 
of the cracks where the geometry represented by the normals doesn’t cast a shadow, 
or where the sun shadow isn’t precise enough. 
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And here’s our sunlight isolated, with Micro Shadow on… 

34 



And micro shadow off 
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Here we have a cross-section of a surface.   
Ambient Occlusion approximates the cone angle visible from a point. 
We can define θ2 as half of the cone angle. 
If we have an incoming light ray, we can define the angle between the light ray and 
surface normal θ.  If θ < θ2, the pixel receives light.  If θ > θ2, the pixel is in shadow. 
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And this is where “tech” meets “art”.  Our AO maps aren’t authored precisely or 
consistently.  AO and a Normal aren’t enough data to represent the shadowing 
accurately anyway.  So that’s already introducing quite a bit of error to the system.  I’ll 
revisit this on the next project, try to get more correct without significantly 
introducing cost, but this was good enough to ship Uncharted 4.   
 
One other note - since we’re representing micro features here, we don’t want a hard 
shadow, we want a soft gradient, since we’re representing what percentage of each 
pixel is in shadow, not a hard cast shadow. 
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One other closely-related feature is “Ambient Occlusion Occlusion”, or “AO Fresnel”.  
The concept is, ambient occlusion represents shadowing in the cracks – in this case, 
cracks that don’t exist in the low-poly model, but that have been baked down to 
normals.  The thing is, when the object is viewed from a glancing angle, those cracks 
SHOULD be occluded by the geometry.  Since the geometry doesn’t exist, we need to 
occlude the cracks in the shader. 
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… Which looks like this.   
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The code is dead simple.  Probably we can find something that represents the 
curvature more correctly.  Note we use the geometry normal, not the normal-map-
normal, for the dot product. 
 
Also note – this is only applied to surfaces with baked lighting.  For objects with probe 
lighting (like characters), the AO map DOES include occlusion information from the in-
game geometry, so we don’t apply the viewing-angle fade there.   
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This is used throughout the whole game, by default, on every environmental surface.  
There are no artist controls to tune, it’s just always applied. 
 

41 



Let’s go a little deeper into shading, and look at some specific material types. 
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Uncharted 4 features a lot of mossy surfaces (and more generally, a lot of “fuzzy” 
surfaces.) 
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Moss doesn’t follow a standard microfacet brdf model.  It’s a lot more porous, with a 
massive amount of self-shadowing, ambient occlusion, and transmitted light.  The 
moss itself tends to have a lighter color at the tips than deeper towards the base.  
And there’s a strong viewing-angle dependency – when viewed straight on, you can 
see down into the shadows between the fibers, and while viewed from an angle, only 
the tips are visible.   
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Here’s a simplified example of the problem – imagine this is a close-up shot of a 1cm 
sphere  You can see how all of the subtle properties of the fuzzy surface start to come 
through.  And when we zoom out so the details are subpixel, the resulting brdf looks 
very different than a microfacet model.  We need to solve both of these cases for our 
moss shader in-game – moss details are large enough to be seen in the texture when 
the camera is close, but become subpixel when more than a few meters away. 
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Here’s a typical moss shader from Uncharted 4, with all the bells and whistles 
applied. 
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Compared to a standard microfacet model with the same texture inputs, which looks 
like hard plastic by comparison. 
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Here are the four main contributing textures – Color, Normal, Heightmap, and 
Ambient Occlusion.  Note how dark the AO map appears – we’ll get back to that in a 
minute. 
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Let’s build up the shader one feature at a time.  Here’s our base microfacet BRDF. 
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We add in Sheen…  it helps a little, but not nearly enough. 
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We add a Light Wrap feature.  This modifies the basic NdotL of the light, letting it 
travel further around the mesh.  This simulates both Subsurface Scattering, and also 
the phenomenon where fuzzy fibers beyond the usual 90-degree light terminator may 
not be in shadow.  Our light wrap ignores the normal map, so it fills in the cracks 
more nicely.  And the artist can also supply a tint for the wrapped light (in this case, 
green!)  This is inspired by Eric Penner’s Pre-Integrated Subsurface Scattering.  For a 
good monochromatic solution, refer to Steve McAuley’s Extension to Energy-
Conserving Wrapped Diffuse 
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We have a Fuzz BRDF feature, which is the subpixel, “microfiber” version of this 
whole phenomenon.  The artist has the ability to specify a separate color for the fuzz 
and we render it as a microfiber layer on top of a microfacet layer. 
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For some cases where we can afford it, we apply parallax shadows.  (Thanks Natalya!) 
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We apply AO.  For moss, the AO goes very dark.  Two features we discussed earlier 
are very critical here – the AO fades to white at a glancing angle, and our Sun Micro 
Shadowing is applied.  
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Finally, we add back a bit of color where the ambient occlusion gets dark.  This 
simulates the effects of bounce light and subsurface scattering.  Our code was a 
simple hack, but refer to the talk by Jorge Jimenez for a really good physically-based 
solution to this problem. 
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And here’s the microfacet BRDF again for comparison. 
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Here’s our light wrap code.  It’s somewhat energy conserving, in that it broadens the 
terminator without just adding energy.   Also note, the only artist control is a color – 
as the color approaches 0, the whole system converges to NdotL. 
 
I won’t show the fuzz code, because it got kind of hacky.  Pick your favorite 
microfiber/fabric brdf and give it some user-friendly controls.  Easy! 
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Many surfaces in the world exhibit this “fuzzy” mossy behavior.  From fabric to distant 
foliage, we see similar behavior.  Even subtle phenomena like dust or peach fuzz have 
these same fuzzy characteristics.  I want to try encapsulating all of the above 
techniques into a standardized interface of our artists, make them into a single brdf 
feature. 
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For Uncharted 4, we wanted a unified wetness function.  Here’s an example of a 
shipped scene.  We’re not the first ones to tackle this problem, but I’m happy with 
our solution, so I thought I’d share.  
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… And the same scene with wetness turned off. 
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And here’s a visualization of the wetness mask the artists painted.  Note – for some 
scenes we wanted the ability to drive wetness dynamically via gameplay.  (like when a 
rain storm starts.)  But for most of the game we just wanted visual consistency, 
physical correctness, and an intuitive interface for the artists.   
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Here are a few more examples.  Note how the puddles show four characteristic 
regions.  A) Core of the puddle, the water surface is totally flat.  B) Region where 
surface tension causes water to cling to the surface underneath, causing a shrink-
wrapped look.  C) Region where water has saturated the surface, causing a darkening 
of the albedo, but not significantly affecting normals or specular response.  D) Dry, 
unmodified surface. 
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And here’s the code.  The artists have control of two parameters, “Wetness” and 
“Porosity”, which can be blended independently.  Wetness drives the transition 
between the different phases explained on the previous slide.  Porosity is an optional 
control (if it’s omitted, Roughness is used instead).  Porosity affects darkening of the 
base color – surfaces that are more porous darken more, surfaces that are less 
porous, more “hard”, darken less.  Note that we just lerp to a “squared” version of the 
base color – compared to real-world reference, this is a reasonable approximation of 
the darkening that happens when a surface gets wet. 
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Here it is in action – you can see, for any input values of the mask, it gives meaningful 
wetness results, so it’s very intuitive to use.  Note, when wetness strength gets above 
a value of 98%, we force the vertex normal to point straight up, which does a very 
convincing job of making the surface of the pool feel flat even if the underlying 
geometry isn’t flat. 
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Our artists used this feature in nearly every scene.  When reinforced by lighting and 
fx, it really helps sell the look. 
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We had a variety of glass surfaces on Uncharted 4.  We were able to achieve all of 
them with a fairly minimal set of tools. 
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Our simplest case of glass is windows.  Technically there should be a refractive 
component, but it’s cheaper (and less artifact-prone) to just do alpha blend.   
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When you think of glass as “transparent”, it’s really the diffuse component that’s 
transparent – the specular component is identical to any other hard surface.  So if 
you’re doing standard alpha blending you can pre-divide out the alpha channel, and 
end up with a result where only the diffuse is affected by the transparency.  The 
surface can have varying transparency (say, if the window is grimy), and the specular 
result should appear constant across the surface.  The only issue is floating point 
inaccuracy as transparency approaches 0. 
 
Note, if you perform premultiplied alpha, this problem becomes much simpler – only 
apply the transparency to the diffuse, not to the specular!   
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For solid glass (or ice) surfaces, we incorporate refraction.  This follows the same rule 
as before, where only the diffuse component becomes transparent and the specular 
is preserved.  But this time we blend against the screen buffer in the shader – we use 
the transparency map to lerp our diffuse component against the pixels refracted from 
behind the object. 
 
For more information on this subject, refer to Morgan McGuire’s talk. 
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We can use Snell’s Law to calculate how the view vector is bent when it transitions 
from air into a refractive surface.  (using the intrinsic function “refract()”).   
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But the adjusted ray isn’t enough.  At some point the ray will exit the material.  In the 
example above, the ray has been offset by a distance d.  We can use that as an offset 
into the Screen UV coordinates.  Note that d increases as v becomes perpendicular to 
the surface, and as the thickness of the surface increases.   
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Like any good physics problem, we can simplify things by treating the surface as a 
perfect sphere.  We have two major classes of refractive surfaces – “thin shell”, which 
represents a hollow sphere like a Christmas ornament, or “solid”, like a crystal ball.   
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Here’s an example - observe that we used “thin shell” refraction for the empty part of 
the tumbler, and “solid” refraction for the base.   
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We also have parameters for the medium to have a tint, like for colored glass, and for 
the surface diffuse to be opaque, which is useful for labels or grime. 
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The user interface is comparatively simple.  Here are all the controls we’ve 
discussed… 
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And here’s the code that’s driven by those parameters.  Note our approximation: for 
solid objects the ray travels a uniform distance, for thin-shell objects the distance 
increases bases on glancing angle.   
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This ice sculpture is a good example of all these parameters in action.  It’s treated as a 
“solid” material type.  It has a slight blue tint, and varying thickness (the body is much 
thicker than the arm, for example.)  And the artist used the Surface Transparency 
control to blend in some frost, applying it with a Fresnel falloff, only to the upward-
facing surfaces. 
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We only support one layer of refraction that reads from the screen buffer.  For the 
wine inside of these glasses, instead of fetching a pixel from the screen buffer, we 
keep the refraction vector in world space, and fetch the refraction color from the 
nearest cubemap (the same one that supplies the specular reflections.)  The artistic 
controls for this type of refraction are the same.   
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In the end, the results were good enough, but can always be better.  The main issues 
we encountered were sort-order artifacts, and transparent objects receiving the 
correct cubemap from the environment.  (Particularly an issue when a glass window 
can be seen from inside and out.)  For the refraction tech we want to try simulating 
frosted glass by multi-sampling the screen buffer, possibly with temporal jitter.  But 
having a physically-plausible basis is a good base to build on. 

81 



82 



Please follow this link to find the video: 
https://www.youtube.com/watch?v=LjCjXFmkX-4 
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There are a lot of vertex processing problems to be solved in a game production. On 
Uncharted 4 we were able to take this approach much further then we initially 
anticipated and did our best to keep it very generalized and accessible. 
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But first things first - the original problem we were trying to solve was foliage 
animation. We had a ton of it and needed a simple and cheap way to get everything 
on screen moving. 
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We wanted a more physically accurate implementation so we went for pivot-based 
rotation. Pivot positions were stored in vertex colors. 
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This solidified the mental shift we had for treating vertex attributes as just general 
purpose data. 

87 



Maya does not have a very robust vertex color scripting pipeline so for most 
operations we had to write our own functionality using Maya API. Nevertheless you 
can use this snippet to get going with baking pivots in maya. 
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Eventually we came up with simplified ways to author pivot data. Like using a UV-
shell based approach. 
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The data is not very visual so it can get confusing for artists. Consider debug tools 
that allow them to check their pivot data in their authoring tool. We had full 
animation preview in Maya but had to sacrifice that in Viewport 2.0. 
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The order of operations for vertex shader rotations effectively allowed us to do 
hierarchical animation without having to store any hierarchical data. Just pivots. We 
also found it necessary for very high-frequency wind motion to have a classic vertex 
normal based animation on tips of leaves and fronds. 
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Minimal amount of parameters is imperative for any efficient system. 2 main 
parameters we used were “Bend Intensity” – Max Rotation Angle and “Bend Speed” – 
which was the Speed of Animation. Sub-object Bend parameters are inputs for our 
time offset calculation explained on page 93-94. Variation was a per sub-object 
randomization multiplyer. 
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While physically-based, getting the angle function required some iteration and magic 
art numbers to get a satisfactory animation with minimal amount of instructions.  
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“timeOffset” variable from the previous slide allows us to have some vertices 
animating further in time. If we modulate that by distance to pivot we get a nice 
swaying motion that is Crucial for achieving an organic look. 
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Pivot based rotation allows for exceptionally easy vertex normal updating (use the 
same axis and angle as for vertex rotation, but origin([0,0,0]) for the pivot). It was 
optional in our first implementation but we are definitely going to hard code it “On” 
going forward. 
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All of the parameters up to this point were on a per-asset level. We had a set of 
similar level-wide parameters that would control the wind globally. All of our foliage 
was setup in a neutral wind environment with the entire foliage library side by side 
for reference. That way we made sure we are getting consistent wind motion across 
the board. 
Apart from our wind parameters we had our global 2d Wind Gust function which was 
in essence a wave-pattern texture projected top-down into the world. It was sampled 
in every wind type creating consistent motion across varied surfaces and objects. 

96 



First pass player interaction was created by rotating a sub-object away from a 
character based on proximity.  
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But we didn’t have to do just rotation. Pushing objects away based on pivot distance 
was a viable option and helped us get interactivity fast and cheap where we wouldn’t 
have been able to otherwise. 
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Notable, most of these interactions are also possible in the Pixel Shader. This is an 
example of UV based wind and player interaction. 
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To extend the functionality and allow for persistence of data we implemented a 
Particle Influence render target that stored direction and intensity of rotation and 
could be written into with particles. That allowed us to have an unlimited amount of 
character and vehicle interactions for the constant cost of sampling this 2d buffer for 
every vertex. It was a good tradeoff. 
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Having vehicle press down foliage was an important problem to solve since we have a 
lot of vehicular gameplay. 
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Adding a generic communication pipeline between FX and Shaders allowed us other 
fun uses, like characters masking certain material layers from the objects underneath. 
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Porting the same logic to skinned meshes wasn’t quite trivial though  
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As a solution, for every hair card we chose one pivot vertex and made it’s post-
skinning position available in the shader for every vertex in the common shell.  
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Here’s an example of the per hair card movement. 
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But we also wanted directional data. For example to limit hair wind to just the side of 
the head that is directly facing wind direction. But there was no proper generalized 
direction data, as vertex normals in this situation are all over the place. 
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Our solution was an additional vertex color set that would store generalized 
directional information and would be pushed through the normal skinning compute. 
Basically a generic extra normal set. 
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Another use of that directional data was the procedural hair gravity feature we used 
to simulate Drake’s wet hair. It relied on the same inputs as the wind which made it 
quite painless to implement. 
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As you can see we didn’t actually rotate the hair cards but rather pushed the verts 
that are furthest from the pivot down in world-space. It was a simpler solution and 
the stretching wasn’t noticeable. 
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Another use-case of the directional info was the shader cloth wind. 
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Using the skinned extra normal set and Wind direction we could derive a mask for the 
part of the shirt that would have cloth wind ripples. Then we projected our 2d wave 
function from both X and Z axes and animated it scrolling down in the vertex shader. 
That gave us the silhouette change but normal update was a very big part of the 
effect. So we just added a normal map of the same wave pattern and blended that in 
the pixel shader. 
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An additional feature of our wind system is blending in a vertex color morph target 
based on global wind gust.  

112 



That way we combine procedural pivot and normal based wind simulation with 2 
discrete “keyframes” for extreme intensities.  
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Another feature to come out of this was StepMorph™. We would blend to a morph 
target based on player distance to sub-object pivot to create more response to the 
player in the world. 
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As you can see the code is extremely simple. Particle World Influence render target 
was a way to provide persistence to this technology as well. 
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As you’ve noticed by now all the features described in this presentation take already 
existing technology and add just enough on top to ungate new and exciting 
opportunities. For this particular case we needed a good vehicle damage model that 
was fast and quick to implement. So we decided to take our skinned vertex color 
channel and use it as a morph target. Since our Skinning Compute would normalize 
normal data we had to store the magnitude of the transformation as a float attribute 
in a separate vertex color channel. 
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Then all we had to do was to have our vehicle damage particles write into our Particle 
Influence render target and read that in the shader to reveal the damaged morph 
target. 
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Another big optimization for us was Pivot Billboarding/Imposters. Since we could get 
cards to rotate around a baked pivot instead of object pivot, we could attach them all 
together saving hundreds of drawcall submissions for all of our mid and wide camera-
facing cards. 
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Another thing we did was a generalized ambient animation pipeline. Our artists had 
access to looping motion, rotation and scale animations that could be combined in all 
kinds of ways. 
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For example this washing machine animation is a small segment rotation around 
object pivot + subtle motion back and forth across the floor. 
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The bobbing boats effect was created using up-down movement with some left-right 
rotation. 
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Geometry rain ripples were using our ambient scale to appear and disappear. We had 
to write a raycast solution to auto populate them. We stored their positions as a 
collection matrixes in a binary so that we could load and control their density at 
runtime. 
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We even had a prototype of vertex shader swarm simulation. Each of the flies is a 
camera facing card but all of them together are just one object. They orient 
themselves according to their velocity and as you can see in the video are pretty 
controllable. 
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Next fun thing we did in vertex shader was keyframe animation. This tech was 
spearheaded by our great FX artists Raymond Popka and Lauren Simpson.  
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We used it for particle crowds and distant particle animals. This tech also allows us to 
update normals while storing them in a separate keyframe pixel row. 
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Definitely use the Load function to sample your texture to avoid filtering or sampling 
messing up your animation. 
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This tech paid off bigtime in this particular implementation. For each particle flipbook  
we create a keyframe texture that has local space bounds of the visible pixels in each 
frame. That allows us to modify FX quads in vertex shader to occupy only the space 
currently needed by the flipbook frame. Thus dramatically reducing fx overdraw and 
pixel shader pressure. As an additional pass we added UV positions to the keyframe 
texture and were able to repack our flipbooks to half the size with minimal to no 
resolution loss. The entire thing took just a couple of days to implement. 
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We also experimented with vertex shader based population of assets. Which wasn’t 
really population. We had a single mesh that we would wrap around the player 
position on a sub-object level based on his distance from WS sub object pivot.  
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Great effect for a magic druid game! 
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Not as expensive as we thought. Still could be made cheaper by moving to compute. 
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Hopefully you found it useful seeing these examples of our work.  Looking back, there 
were a few common philosophies that made our work successful.  By following these 
in all of our work, the technical artists at Naughty Dog were able to contribute a 
significant number of features that were key to the look of Uncharted 4. 
 
* Recreate physical phenomena, don’t just layer hacks: Try to base things on physical 
phenomena as much as possible.  For wind, it has been common to layer sin 
functions of different phases, but doing joint rotation looks much better, and is easier 
for artists to understand! 
* Create as few parameters as possible: It’s often better to have a small set of 
controls that cover 80% of use cases, than to have a slider for every single variable.   
* Be responsible for framerate: At the end of the day, the game has to be in frame.  If 
you write inefficient code, then somewhere down the line, art will have to be cut.   
* When you don’t know, ask!: Andrew and I couldn’t have created all of this tech if 
we weren’t constantly asking programmers for help; how to do a proper matrix 
transform, how to optimize, even how to properly name our variables.   
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